Tag Archives: extension

#438769 Will Robots Make Good Friends? ...

In the 2012 film Robot and Frank, the protagonist, a retired cat burglar named Frank, is suffering the early symptoms of dementia. Concerned and guilty, his son buys him a “home robot” that can talk, do household chores like cooking and cleaning, and remind Frank to take his medicine. It’s a robot the likes of which we’re getting closer to building in the real world.

The film follows Frank, who is initially appalled by the idea of living with a robot, as he gradually begins to see the robot as both functionally useful and socially companionable. The film ends with a clear bond between man and machine, such that Frank is protective of the robot when the pair of them run into trouble.

This is, of course, a fictional story, but it challenges us to explore different kinds of human-to-robot bonds. My recent research on human-robot relationships examines this topic in detail, looking beyond sex robots and robot love affairs to examine that most profound and meaningful of relationships: friendship.

My colleague and I identified some potential risks, like the abandonment of human friends for robotic ones, but we also found several scenarios where robotic companionship can constructively augment people’s lives, leading to friendships that are directly comparable to human-to-human relationships.

Philosophy of Friendship
The robotics philosopher John Danaher sets a very high bar for what friendship means. His starting point is the “true” friendship first described by the Greek philosopher Aristotle, which saw an ideal friendship as premised on mutual good will, admiration, and shared values. In these terms, friendship is about a partnership of equals.

Building a robot that can satisfy Aristotle’s criteria is a substantial technical challenge and is some considerable way off, as Danaher himself admits. Robots that may seem to be getting close, such as Hanson Robotics’ Sophia, base their behavior on a library of pre-prepared responses: a humanoid chatbot, rather than a conversational equal. Anyone who’s had a testing back-and-forth with Alexa or Siri will know AI still has some way to go in this regard.

Aristotle also talked about other forms of “imperfect” friendship, such as “utilitarian” and “pleasure” friendships, which are considered inferior to true friendship because they don’t require symmetrical bonding and are often to one party’s unequal benefit. This form of friendship sets a relatively very low bar which some robots, like “sexbots” and robotic pets, clearly already meet.

Artificial Amigos
For some, relating to robots is just a natural extension of relating to other things in our world, like people, pets, and possessions. Psychologists have even observed how people respond naturally and socially towards media artefacts like computers and televisions. Humanoid robots, you’d have thought, are more personable than your home PC.

However, the field of “robot ethics” is far from unanimous on whether we can—or should— develop any form of friendship with robots. For an influential group of UK researchers who charted a set of “ethical principles of robotics,” human-robot “companionship” is an oxymoron, and to market robots as having social capabilities is dishonest and should be treated with caution, if not alarm. For these researchers, wasting emotional energy on entities that can only simulate emotions will always be less rewarding than forming human-to-human bonds.

But people are already developing bonds with basic robots, like vacuum-cleaning and lawn-trimming machines that can be bought for less than the price of a dishwasher. A surprisingly large number of people give these robots pet names—something they don’t do with their dishwashers. Some even take their cleaning robots on holiday.

Other evidence of emotional bonds with robots include the Shinto blessing ceremony for Sony Aibo robot dogs that were dismantled for spare parts, and the squad of US troops who fired a 21-gun salute, and awarded medals, to a bomb-disposal robot named “Boomer” after it was destroyed in action.

These stories, and the psychological evidence we have so far, make clear that we can extend emotional connections to things that are very different to us, even when we know they are manufactured and pre-programmed. But do those connections constitute a friendship comparable to that shared between humans?

True Friendship?
A colleague and I recently reviewed the extensive literature on human-to-human relationships to try to understand how, and if, the concepts we found could apply to bonds we might form with robots. We found evidence that many coveted human-to-human friendships do not in fact live up to Aristotle’s ideal.

We noted a wide range of human-to-human relationships, from relatives and lovers to parents, carers, service providers, and the intense (but unfortunately one-way) relationships we maintain with our celebrity heroes. Few of these relationships could be described as completely equal and, crucially, they are all destined to evolve over time.

All this means that expecting robots to form Aristotelian bonds with us is to set a standard even human relationships fail to live up to. We also observed forms of social connectedness that are rewarding and satisfying and yet are far from the ideal friendship outlined by the Greek philosopher.

We know that social interaction is rewarding in its own right, and something that, as social mammals, humans have a strong need for. It seems probable that relationships with robots could help to address the deep-seated urge we all feel for social connection—like providing physical comfort, emotional support, and enjoyable social exchanges—currently provided by other humans.

Our paper also discussed some potential risks. These arise particularly in settings where interaction with a robot could come to replace interaction with people, or where people are denied a choice as to whether they interact with a person or a robot—in a care setting, for instance.

These are important concerns, but they’re possibilities and not inevitabilities. In the literature we reviewed we actually found evidence of the opposite effect: robots acting to scaffold social interactions with others, acting as ice-breakers in groups, and helping people to improve their social skills or to boost their self-esteem.

It appears likely that, as time progresses, many of us will simply follow Frank’s path towards acceptance: scoffing at first, before settling into the idea that robots can make surprisingly good companions. Our research suggests that’s already happening—though perhaps not in a way of which Aristotle would have approved.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Andy Kelly on Unsplash Continue reading

Posted in Human Robots

#437689 GITAI Sending Autonomous Robot to Space ...

We’ve been keeping a close watch on GITAI since early last year—what caught our interest initially is the history of the company, which includes a bunch of folks who started in the JSK Lab at the University of Tokyo, won the DARPA Robotics Challenge Trials as SCHAFT, got swallowed by Google, narrowly avoided being swallowed by SoftBank, and are now designing robots that can work in space.

The GITAI YouTube channel has kept us more to less up to date on their progress so far, and GITAI has recently announced the next step in this effort: The deployment of one of their robots on board the International Space Station in 2021.

Photo: GITAI

GITAI’s S1 is a task-specific 8-degrees-of-freedom arm with an integrated sensing and computing system and 1-meter reach.

GITAI has been working on a variety of robots for space operations, the most sophisticated of which is a humanoid torso called G1, which is controlled through an immersive telepresence system. What will be launching into space next year is a more task-specific system called the S1, which is an 8-degrees-of-freedom arm with an integrated sensing and computing system that can be wall-mounted and has a 1-meter reach.

The S1 will be living on board a commercially funded, pressurized airlock-extension module called Bishop, developed by NanoRacks. Mounted on the inside of the Bishop module, the S1 will have access to a task board and a small assembly area, where it will demonstrate common crew intra-vehicular activity, or IVA—tasks like flipping switches, turning knobs, and managing cables. It’ll also do some in-space assembly, or ISA, attaching panels to create a solar array.

Here’s a demonstration of some task board activities, conducted on Earth in a mockup of Bishop:

GITAI says that “all operations conducted by the S1 GITAI robotic arm will be autonomous, followed by some teleoperations from Nanoracks’ in-house mission control.” This is interesting, because from what we’ve seen until now, GITAI has had a heavy emphasis on telepresence, with a human in the loop to get stuff done. As GITAI’s founder and CEO Sho Nakanose commented to us a year ago, “Telepresence robots have far better performance and can be made practical much quicker than autonomous robots, so first we are working on making telepresence robots practical.”

So what’s changed? “GITAI has been concentrating on teleoperations to demonstrate the dexterity of our robot, but now it’s time to show our capabilities to do the same this time with autonomy,” Nakanose told us last week. “In an environment with minimum communication latency, it would be preferable to operate a robot more with teleoperations to enhance the capability of the robot, since with the current technology level of AI, what a robot can do autonomously is very limited. However, in an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”

“In an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”
—Sho Nakanose, GITAI founder and CEO

Nakanose says that this mission will help GITAI to “acquire the skills, know-how, and experience necessary to prepare a robot to be ISS compatible, prov[ing] the maturity of our technology in the microgravity environment.” Success would mean conducting both IVA and ISA experiments as planned (autonomous and teleop for IVA, fully autonomous for ISA), which would be pretty awesome, but we’re told that GITAI has already received a research and development order for space robots from a private space company, and Nakanose expects that “by the mid-2020s, we will be able to show GITAI's robots working in space on an actual mission.”

NanoRacks is schedule to launch the Bishop module on SpaceX CRS-21 in November. The S1 will be launched separately in 2021, and a NASA astronaut will install the robot and then leave it alone to let it start demonstrating how work in space can be made both safer and cheaper once the humans have gotten out of the way. Continue reading

Posted in Human Robots

#437373 Microsoft’s New Deepfake Detector Puts ...

The upcoming US presidential election seems set to be something of a mess—to put it lightly. Covid-19 will likely deter millions from voting in person, and mail-in voting isn’t shaping up to be much more promising. This all comes at a time when political tensions are running higher than they have in decades, issues that shouldn’t be political (like mask-wearing) have become highly politicized, and Americans are dramatically divided along party lines.

So the last thing we need right now is yet another wrench in the spokes of democracy, in the form of disinformation; we all saw how that played out in 2016, and it wasn’t pretty. For the record, disinformation purposely misleads people, while misinformation is simply inaccurate, but without malicious intent. While there’s not a ton tech can do to make people feel safe at crowded polling stations or up the Postal Service’s budget, tech can help with disinformation, and Microsoft is trying to do so.

On Tuesday the company released two new tools designed to combat disinformation, described in a blog post by VP of Customer Security and Trust Tom Burt and Chief Scientific Officer Eric Horvitz.

The first is Microsoft Video Authenticator, which is made to detect deepfakes. In case you’re not familiar with this wicked byproduct of AI progress, “deepfakes” refers to audio or visual files made using artificial intelligence that can manipulate peoples’ voices or likenesses to make it look like they said things they didn’t. Editing a video to string together words and form a sentence someone didn’t say doesn’t count as a deepfake; though there’s manipulation involved, you don’t need a neural network and you’re not generating any original content or footage.

The Authenticator analyzes videos or images and tells users the percentage chance that they’ve been artificially manipulated. For videos, the tool can even analyze individual frames in real time.

Deepfake videos are made by feeding hundreds of hours of video of someone into a neural network, “teaching” the network the minutiae of the person’s voice, pronunciation, mannerisms, gestures, etc. It’s like when you do an imitation of your annoying coworker from accounting, complete with mimicking the way he makes every sentence sound like a question and his eyes widen when he talks about complex spreadsheets. You’ve spent hours—no, months—in his presence and have his personality quirks down pat. An AI algorithm that produces deepfakes needs to learn those same quirks, and more, about whoever the creator’s target is.

Given enough real information and examples, the algorithm can then generate its own fake footage, with deepfake creators using computer graphics and manually tweaking the output to make it as realistic as possible.

The scariest part? To make a deepfake, you don’t need a fancy computer or even a ton of knowledge about software. There are open-source programs people can access for free online, and as far as finding video footage of famous people—well, we’ve got YouTube to thank for how easy that is.

Microsoft’s Video Authenticator can detect the blending boundary of a deepfake and subtle fading or greyscale elements that the human eye may not be able to see.

In the blog post, Burt and Horvitz point out that as time goes by, deepfakes are only going to get better and become harder to detect; after all, they’re generated by neural networks that are continuously learning from and improving themselves.

Microsoft’s counter-tactic is to come in from the opposite angle, that is, being able to confirm beyond doubt that a video, image, or piece of news is real (I mean, can McDonald’s fries cure baldness? Did a seal slap a kayaker in the face with an octopus? Never has it been so imperative that the world know the truth).

A tool built into Microsoft Azure, the company’s cloud computing service, lets content producers add digital hashes and certificates to their content, and a reader (which can be used as a browser extension) checks the certificates and matches the hashes to indicate the content is authentic.

Finally, Microsoft also launched an interactive “Spot the Deepfake” quiz it developed in collaboration with the University of Washington’s Center for an Informed Public, deepfake detection company Sensity, and USA Today. The quiz is intended to help people “learn about synthetic media, develop critical media literacy skills, and gain awareness of the impact of synthetic media on democracy.”

The impact Microsoft’s new tools will have remains to be seen—but hey, we’re glad they’re trying. And they’re not alone; Facebook, Twitter, and YouTube have all taken steps to ban and remove deepfakes from their sites. The AI Foundation’s Reality Defender uses synthetic media detection algorithms to identify fake content. There’s even a coalition of big tech companies teaming up to try to fight election interference.

One thing is for sure: between a global pandemic, widespread protests and riots, mass unemployment, a hobbled economy, and the disinformation that’s remained rife through it all, we’re going to need all the help we can get to make it through not just the election, but the rest of the conga-line-of-catastrophes year that is 2020.

Image Credit: Darius Bashar on Unsplash Continue reading

Posted in Human Robots

#436437 Why AI Will Be the Best Tool for ...

Dmitry Kaminskiy speaks as though he were trying to unload everything he knows about the science and economics of longevity—from senolytics research that seeks to stop aging cells from spewing inflammatory proteins and other molecules to the trillion-dollar life extension industry that he and his colleagues are trying to foster—in one sitting.

At the heart of the discussion with Singularity Hub is the idea that artificial intelligence will be the engine that drives breakthroughs in how we approach healthcare and healthy aging—a concept with little traction even just five years ago.

“At that time, it was considered too futuristic that artificial intelligence and data science … might be more accurate compared to any hypothesis of human doctors,” said Kaminskiy, co-founder and managing partner at Deep Knowledge Ventures, an investment firm that is betting big on AI and longevity.

How times have changed. Artificial intelligence in healthcare is attracting more investments and deals than just about any sector of the economy, according to data research firm CB Insights. In the most recent third quarter, AI healthcare startups raised nearly $1.6 billion, buoyed by a $550 million mega-round from London-based Babylon Health, which uses AI to collect data from patients, analyze the information, find comparable matches, then make recommendations.

Even without the big bump from Babylon Health, AI healthcare startups raised more than $1 billion last quarter, including two companies focused on longevity therapeutics: Juvenescence and Insilico Medicine.

The latter has risen to prominence for its novel use of reinforcement learning and general adversarial networks (GANs) to accelerate the drug discovery process. Insilico Medicine recently published a seminal paper that demonstrated how such an AI system could generate a drug candidate in just 46 days. Co-founder and CEO Alex Zhavoronkov said he believes there is no greater goal in healthcare today—or, really, any venture—than extending the healthy years of the human lifespan.

“I don’t think that there is anything more important than that,” he told Singularity Hub, explaining that an unhealthy society is detrimental to a healthy economy. “I think that it’s very, very important to extend healthy, productive lifespan just to fix the economy.”

An Aging Crisis
The surge of interest in longevity is coming at a time when life expectancy in the US is actually dropping, despite the fact that we spend more money on healthcare than any other nation.

A new paper in the Journal of the American Medical Association found that after six decades of gains, life expectancy for Americans has decreased since 2014, particularly among young and middle-aged adults. While some of the causes are societal, such as drug overdoses and suicide, others are health-related.

While average life expectancy in the US is 78, Kaminskiy noted that healthy life expectancy is about ten years less.

To Zhavoronkov’s point about the economy (a topic of great interest to Kaminskiy as well), the US spent $1.1 trillion on chronic diseases in 2016, according to a report from the Milken Institute, with diabetes, cardiovascular conditions, and Alzheimer’s among the most costly expenses to the healthcare system. When the indirect costs of lost economic productivity are included, the total price tag of chronic diseases in the US is $3.7 trillion, nearly 20 percent of GDP.

“So this is the major negative feedback on the national economy and creating a lot of negative social [and] financial issues,” Kaminskiy said.

Investing in Longevity
That has convinced Kaminskiy that an economy focused on extending healthy human lifespans—including the financial instruments and institutions required to support a long-lived population—is the best way forward.

He has co-authored a book on the topic with Margaretta Colangelo, another managing partner at Deep Knowledge Ventures, which has launched a specialized investment fund, Longevity.Capital, focused on the longevity industry. Kaminskiy estimates that there are now about 20 such investment funds dedicated to funding life extension companies.

In November at the inaugural AI for Longevity Summit in London, he and his collaborators also introduced the Longevity AI Consortium, an academic-industry initiative at King’s College London. Eventually, the research center will include an AI Longevity Accelerator program to serve as a bridge between startups and UK investors.

Deep Knowledge Ventures has committed about £7 million ($9 million) over the next three years to the accelerator program, as well as establishing similar consortiums in other regions of the world, according to Franco Cortese, a partner at Longevity.Capital and director of the Aging Analytics Agency, which has produced a series of reports on longevity.

A Cure for What Ages You
One of the most recent is an overview of Biomarkers for Longevity. A biomarker, in the case of longevity, is a measurable component of health that can indicate a disease state or a more general decline in health associated with aging. Examples range from something as simple as BMI as an indicator of obesity, which is associated with a number of chronic diseases, to sophisticated measurements of telomeres, the protective ends of chromosomes that shorten as we age.

While some researchers are working on moonshot therapies to reverse or slow aging—with a few even arguing we could expand human life on the order of centuries—Kaminskiy said he believes understanding biomarkers of aging could make more radical interventions unnecessary.

In this vision of healthcare, people would be able to monitor their health 24-7, with sensors attuned to various biomarkers that could indicate the onset of everything from the flu to diabetes. AI would be instrumental in not just ingesting the billions of data points required to develop such a system, but also what therapies, treatments, or micro-doses of a drug or supplement would be required to maintain homeostasis.

“Consider it like Tesla with many, many detectors, analyzing the behavior of the car in real time, and a cloud computing system monitoring those signals in real time with high frequency,” Kaminskiy explained. “So the same shall be applied for humans.”

And only sophisticated algorithms, Kaminskiy argued, can make longevity healthcare work on a mass scale but at the individual level. Precision medicine becomes preventive medicine. Healthcare truly becomes a system to support health rather than a way to fight disease.

Image Credit: Photo by h heyerlein on Unsplash Continue reading

Posted in Human Robots

#436414 Japanese Researchers Teaching Robots to ...

When mobile manipulators eventually make it into our homes, self-repair is going to be a very important function. Hopefully, these robots will be durable enough that they won’t need to be repaired very often, but from time to time they’ll almost certainly need minor maintenance. At Humanoids 2019 in Toronto, researchers from the University of Tokyo showed how they taught a PR2 to perform simple repairs on itself by tightening its own screws. And using that skill, the robot was also able to augment itself, adding accessories like hooks to help it carry more stuff. Clever robot!

To keep things simple, the researchers provided the robot with CAD data that tells it exactly where all of its screws are.

At the moment, the robot can’t directly detect on its own whether a particular screw needs tightening, although it can tell if its physical pose doesn’t match its digital model, which suggests that something has gone wonky. It can also check its screws autonomously from time to time, or rely on a human physically pointing out that it has a screw loose, using the human’s finger location to identify which screw it is. Another challenge is that most robots, like most humans, are limited in the areas on themselves that they can comfortably reach. So to tighten up everything, they might have to find themselves a robot friend to help, just like humans help each other put on sunblock.

The actual tightening is either super easy or quite complicated, depending on the location and orientation of the screw. If the robot is lucky, it can just use its continuous wrist rotation for tightening, but if a screw is located in a tight position that requires an Allen wrench, the robot has to regrasp the tool over and over as it incrementally tightens the screw.

Image: University of Tokyo

In one experiment, the researchers taught a PR2 robot to attach a hook to one of its shoulders. The robot uses one hand to grasp the hook and another hand to grasp a screwdriver. The researchers tested the hook by hanging a tote bag on it.

The other neat trick that a robot can do once it can tighten screws on its own body is to add new bits of hardware to itself. PR2 was thoughtfully designed with mounting points on its shoulders (or maybe technically its neck) and head, and it turns out that it can reach these points with its manipulators, allowing to modify itself, as the researchers explain:

When PR2 wants to have a lot of things, the only two hands are not enough to realize that. So we let PR2 to use a bag the same as we put it on our shoulder. PR2 started attaching the hook whose pose is calculated with self CAD data with a driver on his shoulder in order to put a bag on his shoulder. PR2 finished attaching the hook, and the people put a lot of cans in a tote bag and put it on PR2’s shoulder.

“Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver,” by Takayuki Murooka, Kei Okada, and Masayuki Inaba from the University of Tokyo, was presented at Humanoids 2019 in Toronto, Canada. Continue reading

Posted in Human Robots