Tag Archives: exhibit

#434311 Understanding the Hidden Bias in ...

Facial recognition technology has progressed to point where it now interprets emotions in facial expressions. This type of analysis is increasingly used in daily life. For example, companies can use facial recognition software to help with hiring decisions. Other programs scan the faces in crowds to identify threats to public safety.

Unfortunately, this technology struggles to interpret the emotions of black faces. My new study, published last month, shows that emotional analysis technology assigns more negative emotions to black men’s faces than white men’s faces.

This isn’t the first time that facial recognition programs have been shown to be biased. Google labeled black faces as gorillas. Cameras identified Asian faces as blinking. Facial recognition programs struggled to correctly identify gender for people with darker skin.

My work contributes to a growing call to better understand the hidden bias in artificial intelligence software.

Measuring Bias
To examine the bias in the facial recognition systems that analyze people’s emotions, I used a data set of 400 NBA player photos from the 2016 to 2017 season, because players are similar in their clothing, athleticism, age and gender. Also, since these are professional portraits, the players look at the camera in the picture.

I ran the images through two well-known types of emotional recognition software. Both assigned black players more negative emotional scores on average, no matter how much they smiled.

For example, consider the official NBA pictures of Darren Collison and Gordon Hayward. Both players are smiling, and, according to the facial recognition and analysis program Face++, Darren Collison and Gordon Hayward have similar smile scores—48.7 and 48.1 out of 100, respectively.

Basketball players Darren Collision (left) and Gordon Hayward (right). basketball-reference.com

However, Face++ rates Hayward’s expression as 59.7 percent happy and 0.13 percent angry and Collison’s expression as 39.2 percent happy and 27 percent angry. Collison is viewed as nearly as angry as he is happy and far angrier than Hayward—despite the facial recognition program itself recognizing that both players are smiling.

In contrast, Microsoft’s Face API viewed both men as happy. Still, Collison is viewed as less happy than Hayward, with 98 and 93 percent happiness scores, respectively. Despite his smile, Collison is even scored with a small amount of contempt, whereas Hayward has none.

Across all the NBA pictures, the same pattern emerges. On average, Face++ rates black faces as twice as angry as white faces. Face API scores black faces as three times more contemptuous than white faces. After matching players based on their smiles, both facial analysis programs are still more likely to assign the negative emotions of anger or contempt to black faces.

Stereotyped by AI
My study shows that facial recognition programs exhibit two distinct types of bias.

First, black faces were consistently scored as angrier than white faces for every smile. Face++ showed this type of bias. Second, black faces were always scored as angrier if there was any ambiguity about their facial expression. Face API displayed this type of disparity. Even if black faces are partially smiling, my analysis showed that the systems assumed more negative emotions as compared to their white counterparts with similar expressions. The average emotional scores were much closer across races, but there were still noticeable differences for black and white faces.

This observation aligns with other research, which suggests that black professionals must amplify positive emotions to receive parity in their workplace performance evaluations. Studies show that people perceive black men as more physically threatening than white men, even when they are the same size.

Some researchers argue that facial recognition technology is more objective than humans. But my study suggests that facial recognition reflects the same biases that people have. Black men’s facial expressions are scored with emotions associated with threatening behaviors more often than white men, even when they are smiling. There is good reason to believe that the use of facial recognition could formalize preexisting stereotypes into algorithms, automatically embedding them into everyday life.

Until facial recognition assesses black and white faces similarly, black people may need to exaggerate their positive facial expressions—essentially smile more—to reduce ambiguity and potentially negative interpretations by the technology.

Although innovative, artificial intelligence can perpetrate and exacerbate existing power dynamics, leading to disparate impact across racial/ethnic groups. Some societal accountability is necessary to ensure fairness to all groups because facial recognition, like most artificial intelligence, is often invisible to the people most affected by its decisions.

Lauren Rhue, Assistant Professor of Information Systems and Analytics, Wake Forest University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Alex_Po / Shutterstock.com Continue reading

Posted in Human Robots

#432882 Why the Discovery of Room-Temperature ...

Superconductors are among the most bizarre and exciting materials yet discovered. Counterintuitive quantum-mechanical effects mean that, below a critical temperature, they have zero electrical resistance. This property alone is more than enough to spark the imagination.

A current that could flow forever without losing any energy means transmission of power with virtually no losses in the cables. When renewable energy sources start to dominate the grid and high-voltage transmission across continents becomes important to overcome intermittency, lossless cables will result in substantial savings.

What’s more, a superconducting wire carrying a current that never, ever diminishes would act as a perfect store of electrical energy. Unlike batteries, which degrade over time, if the resistance is truly zero, you could return to the superconductor in a billion years and find that same old current flowing through it. Energy could be captured and stored indefinitely!

With no resistance, a huge current could be passed through the superconducting wire and, in turn, produce magnetic fields of incredible power.

You could use them to levitate trains and produce astonishing accelerations, thereby revolutionizing the transport system. You could use them in power plants—replacing conventional methods which spin turbines in magnetic fields to generate electricity—and in quantum computers as the two-level system required for a “qubit,” in which the zeros and ones are replaced by current flowing clockwise or counterclockwise in a superconductor.

Arthur C. Clarke famously said that any sufficiently advanced technology is indistinguishable from magic; superconductors can certainly seem like magical devices. So, why aren’t they busy remaking the world? There’s a problem—that critical temperature.

For all known materials, it’s hundreds of degrees below freezing. Superconductors also have a critical magnetic field; beyond a certain magnetic field strength, they cease to work. There’s a tradeoff: materials with an intrinsically high critical temperature can also often provide the largest magnetic fields when cooled well below that temperature.

This has meant that superconductor applications so far have been limited to situations where you can afford to cool the components of your system to close to absolute zero: in particle accelerators and experimental nuclear fusion reactors, for example.

But even as some aspects of superconductor technology become mature in limited applications, the search for higher temperature superconductors moves on. Many physicists still believe a room-temperature superconductor could exist. Such a discovery would unleash amazing new technologies.

The Quest for Room-Temperature Superconductors
After Heike Kamerlingh Onnes discovered superconductivity by accident while attempting to prove Lord Kelvin’s theory that resistance would increase with decreasing temperature, theorists scrambled to explain the new property in the hope that understanding it might allow for room-temperature superconductors to be synthesized.

They came up with the BCS theory, which explained some of the properties of superconductors. It also predicted that the dream of technologists, a room-temperature superconductor, could not exist; the maximum temperature for superconductivity according to BCS theory was just 30 K.

Then, in the 1980s, the field changed again with the discovery of unconventional, or high-temperature, superconductivity. “High temperature” is still very cold: the highest temperature for superconductivity achieved was -70°C for hydrogen sulphide at extremely high pressures. For normal pressures, -140°C is near the upper limit. Unfortunately, high-temperature superconductors—which require relatively cheap liquid nitrogen, rather than liquid helium, to cool—are mostly brittle ceramics, which are expensive to form into wires and have limited application.

Given the limitations of high-temperature superconductors, researchers continue to believe there’s a better option awaiting discovery—an incredible new material that checks boxes like superconductivity approaching room temperature, affordability, and practicality.

Tantalizing Clues
Without a detailed theoretical understanding of how this phenomenon occurs—although incremental progress happens all the time—scientists can occasionally feel like they’re taking educated guesses at materials that might be likely candidates. It’s a little like trying to guess a phone number, but with the periodic table of elements instead of digits.

Yet the prospect remains, in the words of one researcher, tantalizing. A Nobel Prize and potentially changing the world of energy and electricity is not bad for a day’s work.

Some research focuses on cuprates, complex crystals that contain layers of copper and oxygen atoms. Doping cuprates with various different elements, such exotic compounds as mercury barium calcium copper oxide, are amongst the best superconductors known today.

Research also continues into some anomalous but unexplained reports that graphite soaked in water can act as a room-temperature superconductor, but there’s no indication that this could be used for technological applications yet.

In early 2017, as part of the ongoing effort to explore the most extreme and exotic forms of matter we can create on Earth, researchers managed to compress hydrogen into a metal.

The pressure required to do this was more than that at the core of the Earth and thousands of times higher than that at the bottom of the ocean. Some researchers in the field, called condensed-matter physics, doubt that metallic hydrogen was produced at all.

It’s considered possible that metallic hydrogen could be a room-temperature superconductor. But getting the samples to stick around long enough for detailed testing has proved tricky, with the diamonds containing the metallic hydrogen suffering a “catastrophic failure” under the pressure.

Superconductivity—or behavior that strongly resembles it—was also observed in yttrium barium copper oxide (YBCO) at room temperature in 2014. The only catch was that this electron transport lasted for a tiny fraction of a second and required the material to be bombarded with pulsed lasers.

Not very practical, you might say, but tantalizing nonetheless.

Other new materials display enticing properties too. The 2016 Nobel Prize in Physics was awarded for the theoretical work that characterizes topological insulators—materials that exhibit similarly strange quantum behaviors. They can be considered perfect insulators for the bulk of the material but extraordinarily good conductors in a thin layer on the surface.

Microsoft is betting on topological insulators as the key component in their attempt at a quantum computer. They’ve also been considered potentially important components in miniaturized circuitry.

A number of remarkable electronic transport properties have also been observed in new, “2D” structures—like graphene, these are materials synthesized to be as thick as a single atom or molecule. And research continues into how we can utilize the superconductors we’ve already discovered; for example, some teams are trying to develop insulating material that prevents superconducting HVDC cable from overheating.

Room-temperature superconductivity remains as elusive and exciting as it has been for over a century. It is unclear whether a room-temperature superconductor can exist, but the discovery of high-temperature superconductors is a promising indicator that unconventional and highly useful quantum effects may be discovered in completely unexpected materials.

Perhaps in the future—through artificial intelligence simulations or the serendipitous discoveries of a 21st century Kamerlingh Onnes—this little piece of magic could move into the realm of reality.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#432190 In the Future, There Will Be No Limit to ...

New planets found in distant corners of the galaxy. Climate models that may improve our understanding of sea level rise. The emergence of new antimalarial drugs. These scientific advances and discoveries have been in the news in recent months.

While representing wildly divergent disciplines, from astronomy to biotechnology, they all have one thing in common: Artificial intelligence played a key role in their scientific discovery.

One of the more recent and famous examples came out of NASA at the end of 2017. The US space agency had announced an eighth planet discovered in the Kepler-90 system. Scientists had trained a neural network—a computer with a “brain” modeled on the human mind—to re-examine data from Kepler, a space-borne telescope with a four-year mission to seek out new life and new civilizations. Or, more precisely, to find habitable planets where life might just exist.

The researchers trained the artificial neural network on a set of 15,000 previously vetted signals until it could identify true planets and false positives 96 percent of the time. It then went to work on weaker signals from nearly 700 star systems with known planets.

The machine detected Kepler 90i—a hot, rocky planet that orbits its sun about every two Earth weeks—through a nearly imperceptible change in brightness captured when a planet passes a star. It also found a sixth Earth-sized planet in the Kepler-80 system.

AI Handles Big Data
The application of AI to science is being driven by three great advances in technology, according to Ross King from the Manchester Institute of Biotechnology at the University of Manchester, leader of a team that developed an artificially intelligent “scientist” called Eve.

Those three advances include much faster computers, big datasets, and improved AI methods, King said. “These advances increasingly give AI superhuman reasoning abilities,” he told Singularity Hub by email.

AI systems can flawlessly remember vast numbers of facts and extract information effortlessly from millions of scientific papers, not to mention exhibit flawless logical reasoning and near-optimal probabilistic reasoning, King says.

AI systems also beat humans when it comes to dealing with huge, diverse amounts of data.

That’s partly what attracted a team of glaciologists to turn to machine learning to untangle the factors involved in how heat from Earth’s interior might influence the ice sheet that blankets Greenland.

Algorithms juggled 22 geologic variables—such as bedrock topography, crustal thickness, magnetic anomalies, rock types, and proximity to features like trenches, ridges, young rifts, and volcanoes—to predict geothermal heat flux under the ice sheet throughout Greenland.

The machine learning model, for example, predicts elevated heat flux upstream of Jakobshavn Glacier, the fastest-moving glacier in the world.

“The major advantage is that we can incorporate so many different types of data,” explains Leigh Stearns, associate professor of geology at Kansas University, whose research takes her to the polar regions to understand how and why Earth’s great ice sheets are changing, questions directly related to future sea level rise.

“All of the other models just rely on one parameter to determine heat flux, but the [machine learning] approach incorporates all of them,” Stearns told Singularity Hub in an email. “Interestingly, we found that there is not just one parameter…that determines the heat flux, but a combination of many factors.”

The research was published last month in Geophysical Research Letters.

Stearns says her team hopes to apply high-powered machine learning to characterize glacier behavior over both short and long-term timescales, thanks to the large amounts of data that she and others have collected over the last 20 years.

Emergence of Robot Scientists
While Stearns sees machine learning as another tool to augment her research, King believes artificial intelligence can play a much bigger role in scientific discoveries in the future.

“I am interested in developing AI systems that autonomously do science—robot scientists,” he said. Such systems, King explained, would automatically originate hypotheses to explain observations, devise experiments to test those hypotheses, physically run the experiments using laboratory robotics, and even interpret the results. The conclusions would then influence the next cycle of hypotheses and experiments.

His AI scientist Eve recently helped researchers discover that triclosan, an ingredient commonly found in toothpaste, could be used as an antimalarial drug against certain strains that have developed a resistance to other common drug therapies. The research was published in the journal Scientific Reports.

Automation using artificial intelligence for drug discovery has become a growing area of research, as the machines can work orders of magnitude faster than any human. AI is also being applied in related areas, such as synthetic biology for the rapid design and manufacture of microorganisms for industrial uses.

King argues that machines are better suited to unravel the complexities of biological systems, with even the most “simple” organisms are host to thousands of genes, proteins, and small molecules that interact in complicated ways.

“Robot scientists and semi-automated AI tools are essential for the future of biology, as there are simply not enough human biologists to do the necessary work,” he said.

Creating Shockwaves in Science
The use of machine learning, neural networks, and other AI methods can often get better results in a fraction of the time it would normally take to crunch data.

For instance, scientists at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign, have a deep learning system for the rapid detection and characterization of gravitational waves. Gravitational waves are disturbances in spacetime, emanating from big, high-energy cosmic events, such as the massive explosion of a star known as a supernova. The “Holy Grail” of this type of research is to detect gravitational waves from the Big Bang.

Dubbed Deep Filtering, the method allows real-time processing of data from LIGO, a gravitational wave observatory comprised of two enormous laser interferometers located thousands of miles apart in California and Louisiana. The research was published in Physics Letters B. You can watch a trippy visualization of the results below.

In a more down-to-earth example, scientists published a paper last month in Science Advances on the development of a neural network called ConvNetQuake to detect and locate minor earthquakes from ground motion measurements called seismograms.

ConvNetQuake uncovered 17 times more earthquakes than traditional methods. Scientists say the new method is particularly useful in monitoring small-scale seismic activity, which has become more frequent, possibly due to fracking activities that involve injecting wastewater deep underground. You can learn more about ConvNetQuake in this video:

King says he believes that in the long term there will be no limit to what AI can accomplish in science. He and his team, including Eve, are currently working on developing cancer therapies under a grant from DARPA.

“Robot scientists are getting smarter and smarter; human scientists are not,” he says. “Indeed, there is arguably a case that human scientists are less good. I don’t see any scientist alive today of the stature of a Newton or Einstein—despite the vast number of living scientists. The Physics Nobel [laureate] Frank Wilczek is on record as saying (10 years ago) that in 100 years’ time the best physicist will be a machine. I agree.”

Image Credit: Romaset / Shutterstock.com Continue reading

Posted in Human Robots

#432009 How Swarm Intelligence Is Making Simple ...

As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found throughout nature, but researchers have recently begun using it to transform various fields such as robotics, data mining, medicine, and blockchains.

Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create superhighways of food and information, wage war, and enslave other ant species—all of which are beyond the comprehension of any single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that doesn’t actually exist.

It happens by a process called stigmergy. Simply put, a small change by a group member causes other members to behave differently, leading to a new pattern of behavior.

When an ant finds a food source, it marks the path with pheromones. This attracts other ants to that path, leads them to the food source, and prompts them to mark the same path with more pheromones. Over time, the most efficient route will become the superhighway, as the faster and easier a path is, the more ants will reach the food and the more pheromones will be on the path. Thus, it looks as if a more intelligent being chose the best path, but it emerged from the tiny, simple changes made by individuals.

So what does this mean for humans? Well, a lot. In the past few decades, researchers have developed numerous algorithms and metaheuristics, such as ant colony optimization and particle swarm optimization, and they are rapidly being adopted.

Swarm Robotics
A swarm of robots would work on the same principles as an ant colony: each member has a simple set of rules to follow, leading to self-organization and self-sufficiency.

For example, researchers at Georgia Robotics and InTelligent Systems (GRITS) created a small swarm of simple robots that can spell and play piano. The robots cannot communicate, but based solely on the position of surrounding robots, they are able to use their specially-created algorithm to determine the optimal path to complete their task.

This is also immensely useful for drone swarms.

Last February, Ehang, an aviation company out of China, created a swarm of a thousand drones that not only lit the sky with colorful, intricate displays, but demonstrated the ability to improvise and troubleshoot errors entirely autonomously.

Further, just recently, the University of Cambridge and Koc University unveiled their idea for what they call the Energy Neutral Internet of Drones. Amazingly, this drone swarm would take initiative to share information or energy with other drones that did not receive a communication or are running low on energy.

Militaries all of the world are utilizing this as well.

Last year, the US Department of Defense announced it had successfully tested a swarm of miniature drones that could carry out complex missions cheaper and more efficiently. They claimed, “The micro-drones demonstrated advanced swarm behaviors such as collective decision-making, adaptive formation flying, and self-healing.”

Some experts estimate at least 30 nations are actively developing drone swarms—and even submersible drones—for military missions, including intelligence gathering, missile defense, precision missile strikes, and enhanced communication.

NASA also plans on deploying swarms of tiny spacecraft for space exploration, and the medical community is looking into using swarms of nanobots for precision delivery of drugs, microsurgery, targeting toxins, and biological sensors.

What If Humans Are the Ants?
The strength of any blockchain comes from the size and diversity of the community supporting it. Cryptocurrencies like Bitcoin, Ethereum, and Litecoin are driven by the people using, investing in, and, most importantly, mining them so their blockchains can function. Without an active community, or swarm, their blockchains wither away.

When viewed from a great height, a blockchain performs eerily like an ant colony in that it will naturally find the most efficient way to move vast amounts of information.

Miners compete with each other to perform the complex calculations necessary to add another block, for which the winner is rewarded with the blockchain’s native currency and agreed-upon fees. Of course, the miner with the more powerful computers is more likely to win the reward, thereby empowering the winner’s ability to mine and receive even more rewards. Over time, fewer and fewer miners are going to exist, as the winners are able to more efficiently shoulder more of the workload, in much the same way that ants build superhighways.

Further, a company called Unanimous AI has developed algorithms that allow humans to collectively make predictions. So far, the AI algorithms and their human participants have made some astoundingly accurate predictions, such as the first four winning horses of the Kentucky Derby, the Oscar winners, the Stanley Cup winners, and others. The more people involved in the swarm, the greater their predictive power will be.

To be clear, this is not a prediction based on group consensus. Rather, the swarm of humans uses software to input their opinions in real time, thus making micro-changes to the rest of the swarm and the inputs of other members.

Studies show that swarm intelligence consistently outperforms individuals and crowds working without the algorithms. While this is only the tip of the iceberg, some have suggested swarm intelligence can revolutionize how doctors diagnose a patient or how products are marketed to consumers. It might even be an essential step in truly creating AI.

While swarm intelligence is an essential part of many species’ success, it’s only a matter of time before humans harness its effectiveness as well.

Image Credit: Nature Bird Photography / Shutterstock.com Continue reading

Posted in Human Robots

#431899 Darker Still: Black Mirror’s New ...

The key difference between science fiction and fantasy is that science fiction is entirely possible because of its grounding in scientific facts, while fantasy is not. This is where Black Mirror is both an entertaining and terrifying work of science fiction. Created by Charlie Brooker, the anthological series tells cautionary tales of emerging technology that could one day be an integral part of our everyday lives.
While watching the often alarming episodes, one can’t help but recognize the eerie similarities to some of the tech tools that are already abundant in our lives today. In fact, many previous Black Mirror predictions are already becoming reality.
The latest season of Black Mirror was arguably darker than ever. This time, Brooker seemed to focus on the ethical implications of one particular area: neurotechnology.
Emerging Neurotechnology
Warning: The remainder of this article may contain spoilers from Season 4 of Black Mirror.
Most of the storylines from season four revolve around neurotechnology and brain-machine interfaces. They are based in a world where people have the power to upload their consciousness onto machines, have fully immersive experiences in virtual reality, merge their minds with other minds, record others’ memories, and even track what others are thinking, feeling, and doing.
How can all this ever be possible? Well, these capabilities are already being developed by pioneers and researchers globally. Early last year, Elon Musk unveiled Neuralink, a company whose goal is to merge the human mind with AI through a neural lace. We’ve already connected two brains via the internet, allowing one brain to communicate with another. Various research teams have been able to develop mechanisms for “reading minds” or reconstructing memories of individuals via devices. The list goes on.
With many of the technologies we see in Black Mirror it’s not a question of if, but when. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to upload our consciousness onto the cloud via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” While other experts continue to challenge Kurzweil on the exact year we’ll accomplish this feat, with the current exponential growth of our technological capabilities, we’re on track to get there eventually.
Ethical Questions
As always, technology is only half the conversation. Equally fascinating are the many ethical and moral questions this topic raises.
For instance, with the increasing convergence of artificial intelligence and virtual reality, we have to ask ourselves if our morality from the physical world transfers equally into the virtual world. The first episode of season four, USS Calister, tells the story of a VR pioneer, Robert Daley, who creates breakthrough AI and VR to satisfy his personal frustrations and sexual urges. He uses the DNA of his coworkers (and their children) to re-create them digitally in his virtual world, to which he escapes to torture them, while they continue to be indifferent in the “real” world.
Audiences are left asking themselves: should what happens in the digital world be considered any less “real” than the physical world? How do we know if the individuals in the virtual world (who are ultimately based on algorithms) have true feelings or sentiments? Have they been developed to exhibit characteristics associated with suffering, or can they really feel suffering? Fascinatingly, these questions point to the hard problem of consciousness—the question of if, why, and how a given physical process generates the specific experience it does—which remains a major mystery in neuroscience.
Towards the end of USS Calister, the hostages of Daley’s virtual world attempt to escape through suicide, by committing an act that will delete the code that allows them to exist. This raises yet another mind-boggling ethical question: if we “delete” code that signifies a digital being, should that be considered murder (or suicide, in this case)? Why shouldn’t it? When we murder someone we are, in essence, taking away their capacity to live and to be, without their consent. By unplugging a self-aware AI, wouldn’t we be violating its basic right to live in the same why? Does AI, as code, even have rights?
Brain implants can also have a radical impact on our self-identity and how we define the word “I”. In the episode Black Museum, instead of witnessing just one horror, we get a series of scares in little segments. One of those segments tells the story of a father who attempts to reincarnate the mother of his child by uploading her consciousness into his mind and allowing her to live in his head (essentially giving him multiple personality disorder). In this way, she can experience special moments with their son.
With “no privacy for him, and no agency for her” the good intention slowly goes very wrong. This story raises a critical question: should we be allowed to upload consciousness into limited bodies? Even more, if we are to upload our minds into “the cloud,” at what point do we lose our individuality to become one collective being?
These questions can form the basis of hours of debate, but we’re just getting started. There are no right or wrong answers with many of these moral dilemmas, but we need to start having such discussions.
The Downside of Dystopian Sci-Fi
Like last season’s San Junipero, one episode of the series, Hang the DJ, had an uplifting ending. Yet the overwhelming majority of the stories in Black Mirror continue to focus on the darkest side of human nature, feeding into the pre-existing paranoia of the general public. There is certainly some value in this; it’s important to be aware of the dangers of technology. After all, what better way to explore these dangers before they occur than through speculative fiction?
A big takeaway from every tale told in the series is that the greatest threat to humanity does not come from technology, but from ourselves. Technology itself is not inherently good or evil; it all comes down to how we choose to use it as a society. So for those of you who are techno-paranoid, beware, for it’s not the technology you should fear, but the humans who get their hands on it.
While we can paint negative visions for the future, though, it is also important to paint positive ones. The kind of visions we set for ourselves have the power to inspire and motivate generations. Many people are inherently pessimistic when thinking about the future, and that pessimism in turn can shape their contributions to humanity.
While utopia may not exist, the future of our species could and should be one of solving global challenges, abundance, prosperity, liberation, and cosmic transcendence. Now that would be a thrilling episode to watch.
Image Credit: Billion Photos / Shutterstock.com Continue reading

Posted in Human Robots