Tag Archives: engineering

#436261 AI and the future of work: The prospects ...

AI experts gathered at MIT last week, with the aim of predicting the role artificial intelligence will play in the future of work. Will it be the enemy of the human worker? Will it prove to be a savior? Or will it be just another innovation—like electricity or the internet?

As IEEE Spectrum previously reported, this conference (“AI and the Future of Work Congress”), held at MIT’s Kresge Auditorium, offered sometimes pessimistic outlooks on the job- and industry-destroying path that AI and automation seems to be taking: Self-driving technology will put truck drivers out of work; smart law clerk algorithms will put paralegals out of work; robots will (continue to) put factory and warehouse workers out of work.

Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said even just in the past couple years, he’s noticed a shift in the public’s perception of AI. “I remember from previous versions of this conference, it felt like we had to make the case that we’re living in a period of accelerating change and that AI’s going to have a big impact,” he said. “Nobody had to make that case today.”

Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future, noted that following the path of least resistance is not a viable way forward. “If we do nothing, we’re in trouble,” she said. “The future will not take care of itself. We have to do something about it.”

Panelists and speakers spoke about championing productive uses of AI in the workplace, which ultimately benefit both employees and customers.

As one example, Zeynep Ton, professor at MIT Sloan School of Management, highlighted retailer Sam’s Club’s recent rollout of a program called Sam’s Garage. Previously customers shopping for tires for their car spent somewhere between 30 and 45 minutes with a Sam’s Club associate paging through manuals and looking up specs on websites.

But with an AI algorithm, they were able to cut that spec hunting time down to 2.2 minutes. “Now instead of wasting their time trying to figure out the different tires, they can field the different options and talk about which one would work best [for the customer],” she said. “This is a great example of solving a real problem, including [enhancing] the experience of the associate as well as the customer.”

“We think of it as an AI-first world that’s coming,” said Scott Prevost, VP of engineering at Adobe. Prevost said AI agents in Adobe’s software will behave something like a creative assistant or intern who will take care of more mundane tasks for you.

“We need a mindset change. That it is not just about minimizing costs or maximizing tax benefits, but really worrying about what kind of society we’re creating and what kind of environment we’re creating if we keep on just automating and [eliminating] good jobs.”
—Daron Acemoglu, MIT Institute Professor of Economics

Prevost cited an internal survey of Adobe customers that found 74 percent of respondents’ time was spent doing repetitive work—the kind that might be automated by an AI script or smart agent.

“It used to be you’d have the resources to work on three ideas [for a creative pitch or presentation],” Prevost said. “But if the AI can do a lot of the production work, then you can have 10 or 100. Which means you can actually explore some of the further out ideas. It’s also lowering the bar for everyday people to create really compelling output.”

In addition to changing the nature of work, noted a number of speakers at the event, AI is also directly transforming the workforce.

Jacob Hsu, CEO of the recruitment company Catalyte spoke about using AI as a job placement tool. The company seeks to fill myriad positions including auto mechanics, baristas, and office workers—with its sights on candidates including young people and mid-career job changers. To find them, it advertises on Craigslist, social media, and traditional media.

The prospects who sign up with Catalyte take a battery of tests. The company’s AI algorithms then match each prospect’s skills with the field best suited for their talents.

“We want to be like the Harry Potter Sorting Hat,” Hsu said.

Guillermo Miranda, IBM’s global head of corporate social responsibility, said IBM has increasingly been hiring based not on credentials but on skills. For instance, he said, as much as 50 per cent of the company’s new hires in some divisions do not have a traditional four-year college degree. “As a company, we need to be much more clear about hiring by skills,” he said. “It takes discipline. It takes conviction. It takes a little bit of enforcing with H.R. by the business leaders. But if you hire by skills, it works.”

Ardine Williams, Amazon’s VP of workforce development, said the e-commerce giant has been experimenting with developing skills of the employees at its warehouses (a.k.a. fulfillment centers) with an eye toward putting them in a position to get higher-paying work with other companies.

She described an agreement Amazon had made in its Dallas fulfillment center with aircraft maker Sikorsky, which had been experiencing a shortage of skilled workers for its nearby factory. So Amazon offered to its employees a free certification training to seek higher-paying work at Sikorsky.

“I do that because now I have an attraction mechanism—like a G.I. Bill,” Williams said. The program is also only available for employees who have worked at least a year with Amazon. So their program offers medium-term job retention, while ultimately moving workers up the wage ladder.

Radha Basu, CEO of AI data company iMerit, said her firm aggressively hires from the pool of women and under-resourced minority communities in the U.S. and India. The company specializes in turning unstructured data (e.g. video or audio feeds) into tagged and annotated data for machine learning, natural language processing, or computer vision applications.

“There is a motivation with these young people to learn these things,” she said. “It comes with no baggage.”

Alastair Fitzpayne, executive director of The Aspen Institute’s Future of Work Initiative, said the future of work ultimately means, in bottom-line terms, the future of human capital. “We have an R&D tax credit,” he said. “We’ve had it for decades. It provides credit for companies that make new investment in research and development. But we have nothing on the human capital side that’s analogous.”

So a company that’s making a big investment in worker training does it on their own dime, without any of the tax benefits that they might accrue if they, say, spent it on new equipment or new technology. Fitzpayne said a simple tweak to the R&D tax credit could make a big difference by incentivizing new investment programs in worker training. Which still means Amazon’s pre-existing worker training programs—for a company that already famously pays no taxes—would not count.

“We need a different way of developing new technologies,” said Daron Acemoglu, MIT Institute Professor of Economics. He pointed to the clean energy sector as an example. First a consensus around the problem needs to emerge. Then a broadly agreed-upon set of goals and measurements needs to be developed (e.g., that AI and automation would, for instance, create at least X new jobs for every Y jobs that it eliminates).

Then it just needs to be implemented.

“We need to build a consensus that, along the path we’re following at the moment, there are going to be increasing problems for labor,” Acemoglu said. “We need a mindset change. That it is not just about minimizing costs or maximizing tax benefits, but really worrying about what kind of society we’re creating and what kind of environment we’re creating if we keep on just automating and [eliminating] good jobs.” Continue reading

Posted in Human Robots

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots

#436188 The Blogger Behind “AI ...

Sure, artificial intelligence is transforming the world’s societies and economies—but can an AI come up with plausible ideas for a Halloween costume?

Janelle Shane has been asking such probing questions since she started her AI Weirdness blog in 2016. She specializes in training neural networks (which underpin most of today’s machine learning techniques) on quirky data sets such as compilations of knitting instructions, ice cream flavors, and names of paint colors. Then she asks the neural net to generate its own contributions to these categories—and hilarity ensues. AI is not likely to disrupt the paint industry with names like “Ronching Blue,” “Dorkwood,” and “Turdly.”

Shane’s antics have a serious purpose. She aims to illustrate the serious limitations of today’s AI, and to counteract the prevailing narrative that describes AI as well on its way to superintelligence and complete human domination. “The danger of AI is not that it’s too smart,” Shane writes in her new book, “but that it’s not smart enough.”

The book, which came out on Tuesday, is called You Look Like a Thing and I Love You. It takes its odd title from a list of AI-generated pick-up lines, all of which would at least get a person’s attention if shouted, preferably by a robot, in a crowded bar. Shane’s book is shot through with her trademark absurdist humor, but it also contains real explanations of machine learning concepts and techniques. It’s a painless way to take AI 101.

She spoke with IEEE Spectrum about the perils of placing too much trust in AI systems, the strange AI phenomenon of “giraffing,” and her next potential Halloween costume.

Janelle Shane on . . .

The un-delicious origin of her blog
“The narrower the problem, the smarter the AI will seem”
Why overestimating AI is dangerous
Giraffing!
Machine and human creativity

The un-delicious origin of her blog IEEE Spectrum: You studied electrical engineering as an undergrad, then got a master’s degree in physics. How did that lead to you becoming the comedian of AI?
Janelle Shane: I’ve been interested in machine learning since freshman year of college. During orientation at Michigan State, a professor who worked on evolutionary algorithms gave a talk about his work. It was full of the most interesting anecdotes–some of which I’ve used in my book. He told an anecdote about people setting up a machine learning algorithm to do lens design, and the algorithm did end up designing an optical system that works… except one of the lenses was 50 feet thick, because they didn’t specify that it couldn’t do that.
I started working in his lab on optics, doing ultra-short laser pulse work. I ended up doing a lot more optics than machine learning, but I always found it interesting. One day I came across a list of recipes that someone had generated using a neural net, and I thought it was hilarious and remembered why I thought machine learning was so cool. That was in 2016, ages ago in machine learning land.
Spectrum: So you decided to “establish weirdness as your goal” for your blog. What was the first weird experiment that you blogged about?
Shane: It was generating cookbook recipes. The neural net came up with ingredients like: “Take ¼ pounds of bones or fresh bread.” That recipe started out: “Brown the salmon in oil, add creamed meat to the mixture.” It was making mistakes that showed the thing had no memory at all.
Spectrum: You say in the book that you can learn a lot about AI by giving it a task and watching it flail. What do you learn?
Shane: One thing you learn is how much it relies on surface appearances rather than deep understanding. With the recipes, for example: It got the structure of title, category, ingredients, instructions, yield at the end. But when you look more closely, it has instructions like “Fold the water and roll it into cubes.” So clearly this thing does not understand water, let alone the other things. It’s recognizing certain phrases that tend to occur, but it doesn’t have a concept that these recipes are describing something real. You start to realize how very narrow the algorithms in this world are. They only know exactly what we tell them in our data set.
BACK TO TOP↑ “The narrower the problem, the smarter the AI will seem” Spectrum: That makes me think of DeepMind’s AlphaGo, which was universally hailed as a triumph for AI. It can play the game of Go better than any human, but it doesn’t know what Go is. It doesn’t know that it’s playing a game.
Shane: It doesn’t know what a human is, or if it’s playing against a human or another program. That’s also a nice illustration of how well these algorithms do when they have a really narrow and well-defined problem.
The narrower the problem, the smarter the AI will seem. If it’s not just doing something repeatedly but instead has to understand something, coherence goes down. For example, take an algorithm that can generate images of objects. If the algorithm is restricted to birds, it could do a recognizable bird. If this same algorithm is asked to generate images of any animal, if its task is that broad, the bird it generates becomes an unrecognizable brown feathered smear against a green background.
Spectrum: That sounds… disturbing.
Shane: It’s disturbing in a weird amusing way. What’s really disturbing is the humans it generates. It hasn’t seen them enough times to have a good representation, so you end up with an amorphous, usually pale-faced thing with way too many orifices. If you asked it to generate an image of a person eating pizza, you’ll have blocks of pizza texture floating around. But if you give that image to an image-recognition algorithm that was trained on that same data set, it will say, “Oh yes, that’s a person eating pizza.”
BACK TO TOP↑ Why overestimating AI is dangerous Spectrum: Do you see it as your role to puncture the AI hype?
Shane: I do see it that way. Not a lot of people are bringing out this side of AI. When I first started posting my results, I’d get people saying, “I don’t understand, this is AI, shouldn’t it be better than this? Why doesn't it understand?” Many of the impressive examples of AI have a really narrow task, or they’ve been set up to hide how little understanding it has. There’s a motivation, especially among people selling products based on AI, to represent the AI as more competent and understanding than it actually is.
Spectrum: If people overestimate the abilities of AI, what risk does that pose?
Shane: I worry when I see people trusting AI with decisions it can’t handle, like hiring decisions or decisions about moderating content. These are really tough tasks for AI to do well on. There are going to be a lot of glitches. I see people saying, “The computer decided this so it must be unbiased, it must be objective.”

“If the algorithm’s task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias.”
—Janelle Shane, AI Weirdness blogger
That’s another thing I find myself highlighting in the work I’m doing. If the data includes bias, the algorithm will copy that bias. You can’t tell it not to be biased, because it doesn’t understand what bias is. I think that message is an important one for people to understand.
If there’s bias to be found, the algorithm is going to go after it. It’s like, “Thank goodness, finally a signal that’s reliable.” But for a tough problem like: Look at these resumes and decide who’s best for the job. If its task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias. There’s an example in the book of a hiring algorithm that Amazon was developing that discriminated against women, because the historical data it was trained on had that gender bias.
Spectrum: What are the other downsides of using AI systems that don’t really understand their tasks?
Shane: There is a risk in putting too much trust in AI and not examining its decisions. Another issue is that it can solve the wrong problems, without anyone realizing it. There have been a couple of cases in medicine. For example, there was an algorithm that was trained to recognize things like skin cancer. But instead of recognizing the actual skin condition, it latched onto signals like the markings a surgeon makes on the skin, or a ruler placed there for scale. It was treating those things as a sign of skin cancer. It’s another indication that these algorithms don’t understand what they’re looking at and what the goal really is.
BACK TO TOP↑ Giraffing Spectrum: In your blog, you often have neural nets generate names for things—such as ice cream flavors, paint colors, cats, mushrooms, and types of apples. How do you decide on topics?
Shane: Quite often it’s because someone has written in with an idea or a data set. They’ll say something like, “I’m the MIT librarian and I have a whole list of MIT thesis titles.” That one was delightful. Or they’ll say, “We are a high school robotics team, and we know where there’s a list of robotics team names.” It’s fun to peek into a different world. I have to be careful that I’m not making fun of the naming conventions in the field. But there’s a lot of humor simply in the neural net’s complete failure to understand. Puns in particular—it really struggles with puns.
Spectrum: Your blog is quite absurd, but it strikes me that machine learning is often absurd in itself. Can you explain the concept of giraffing?
Shane: This concept was originally introduced by [internet security expert] Melissa Elliott. She proposed this phrase as a way to describe the algorithms’ tendency to see giraffes way more often than would be likely in the real world. She posted a whole bunch of examples, like a photo of an empty field in which an image-recognition algorithm has confidently reported that there are giraffes. Why does it think giraffes are present so often when they’re actually really rare? Because they’re trained on data sets from online. People tend to say, “Hey look, a giraffe!” And then take a photo and share it. They don’t do that so often when they see an empty field with rocks.
There’s also a chatbot that has a delightful quirk. If you show it some photo and ask it how many giraffes are in the picture, it will always answer with some non zero number. This quirk comes from the way the training data was generated: These were questions asked and answered by humans online. People tended not to ask the question “How many giraffes are there?” when the answer was zero. So you can show it a picture of someone holding a Wii remote. If you ask it how many giraffes are in the picture, it will say two.
BACK TO TOP↑ Machine and human creativity Spectrum: AI can be absurd, and maybe also creative. But you make the point that AI art projects are really human-AI collaborations: Collecting the data set, training the algorithm, and curating the output are all artistic acts on the part of the human. Do you see your work as a human-AI art project?
Shane: Yes, I think there is artistic intent in my work; you could call it literary or visual. It’s not so interesting to just take a pre-trained algorithm that’s been trained on utilitarian data, and tell it to generate a bunch of stuff. Even if the algorithm isn’t one that I’ve trained myself, I think about, what is it doing that’s interesting, what kind of story can I tell around it, and what do I want to show people.

The Halloween costume algorithm “was able to draw on its knowledge of which words are related to suggest things like sexy barnacle.”
—Janelle Shane, AI Weirdness blogger
Spectrum: For the past three years you’ve been getting neural nets to generate ideas for Halloween costumes. As language models have gotten dramatically better over the past three years, are the costume suggestions getting less absurd?
Shane: Yes. Before I would get a lot more nonsense words. This time I got phrases that were related to real things in the data set. I don’t believe the training data had the words Flying Dutchman or barnacle. But it was able to draw on its knowledge of which words are related to suggest things like sexy barnacle and sexy Flying Dutchman.
Spectrum: This year, I saw on Twitter that someone made the gothy giraffe costume happen. Would you ever dress up for Halloween in a costume that the neural net suggested?
Shane: I think that would be fun. But there would be some challenges. I would love to go as the sexy Flying Dutchman. But my ambition may constrict me to do something more like a list of leg parts.
BACK TO TOP↑ Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436123 A Path Towards Reasonable Autonomous ...

Editor’s Note: The debate on autonomous weapons systems has been escalating over the past several years as the underlying technologies evolve to the point where their deployment in a military context seems inevitable. IEEE Spectrum has published a variety of perspectives on this issue. In summary, while there is a compelling argument to be made that autonomous weapons are inherently unethical and should be banned, there is also a compelling argument to be made that autonomous weapons could potentially make conflicts less harmful, especially to non-combatants. Despite an increasing amount of international attention (including from the United Nations), progress towards consensus, much less regulatory action, has been slow. The following workshop paper on autonomous weapons systems policy is remarkable because it was authored by a group of experts with very different (and in some cases divergent) views on the issue. Even so, they were able to reach consensus on a roadmap that all agreed was worth considering. It’s collaborations like this that could be the best way to establish a reasonable path forward on such a contentious issue, and with the permission of the authors, we’re excited to be able to share this paper (originally posted on Georgia Tech’s Mobile Robot Lab website) with you in its entirety.

Autonomous Weapon Systems: A Roadmapping Exercise
Over the past several years, there has been growing awareness and discussion surrounding the possibility of future lethal autonomous weapon systems that could fundamentally alter humanity’s relationship with violence in war. Lethal autonomous weapons present a host of legal, ethical, moral, and strategic challenges. At the same time, artificial intelligence (AI) technology could be used in ways that improve compliance with the laws of war and reduce non-combatant harm. Since 2014, states have come together annually at the United Nations to discuss lethal autonomous weapons systems1. Additionally, a growing number of individuals and non-governmental organizations have become active in discussions surrounding autonomous weapons, contributing to a rapidly expanding intellectual field working to better understand these issues. While a wide range of regulatory options have been proposed for dealing with the challenge of lethal autonomous weapons, ranging from a preemptive, legally binding international treaty to reinforcing compliance with existing laws of war, there is as yet no international consensus on a way forward.

The lack of an international policy consensus, whether codified in a formal document or otherwise, poses real risks. States could fall victim to a security dilemma in which they deploy untested or unsafe weapons that pose risks to civilians or international stability. Widespread proliferation could enable illicit uses by terrorists, criminals, or rogue states. Alternatively, a lack of guidance on which uses of autonomy are acceptable could stifle valuable research that could reduce the risk of non-combatant harm.

International debate thus far has predominantly centered around whether or not states should adopt a preemptive, legally-binding treaty that would ban lethal autonomous weapons before they can be built. Some of the authors of this document have called for such a treaty and would heartily support it, if states were to adopt it. Other authors of this document have argued an overly expansive treaty would foreclose the possibility of using AI to mitigate civilian harm. Options for international action are not binary, however, and there are a range of policy options that states should consider between adopting a comprehensive treaty or doing nothing.

The purpose of this paper is to explore the possibility of a middle road. If a roadmap could garner sufficient stakeholder support to have significant beneficial impact, then what elements could it contain? The exercise whose results are presented below was not to identify recommendations that the authors each prefer individually (the authors hold a broad spectrum of views), but instead to identify those components of a roadmap that the authors are all willing to entertain2. We, the authors, invite policymakers to consider these components as they weigh possible actions to address concerns surrounding autonomous weapons3.

Summary of Issues Surrounding Autonomous Weapons

There are a variety of issues that autonomous weapons raise, which might lend themselves to different approaches. A non-exhaustive list of issues includes:

The potential for beneficial uses of AI and autonomy that could improve precision and reliability in the use of force and reduce non-combatant harm.
Uncertainty about the path of future technology and the likelihood of autonomous weapons being used in compliance with the laws of war, or international humanitarian law (IHL), in different settings and on various timelines.
A desire for some degree of human involvement in the use of force. This has been expressed repeatedly in UN discussions on lethal autonomous weapon systems in different ways.
Particular risks surrounding lethal autonomous weapons specifically targeting personnel as opposed to vehicles or materiel.
Risks regarding international stability.
Risk of proliferation to terrorists, criminals, or rogue states.
Risk that autonomous systems that have been verified to be acceptable can be made unacceptable through software changes.
The potential for autonomous weapons to be used as scalable weapons enabling a small number of individuals to inflict very large-scale casualties at low cost, either intentionally or accidentally.

Summary of Components

A time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems4. Such a moratorium could include exceptions for certain classes of weapons.
Define guiding principles for human involvement in the use of force.
Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.
Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states.
Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL compliance in the use of future weapons.

Component 1:

States should consider adopting a five-year, renewable moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems. Anti-personnel lethal autonomous weapon systems are defined as weapons systems that, once activated, can select and engage dismounted human targets without further intervention by a human operator, possibly excluding systems such as:

Fixed-point defensive systems with human supervisory control to defend human-occupied bases or installations
Limited, proportional, automated counter-fire systems that return fire in order to provide immediate, local defense of humans
Time-limited pursuit deterrent munitions or systems
Autonomous weapon systems with size above a specified explosive weight limit that select as targets hand-held weapons, such as rifles, machine guns, anti-tank weapons, or man-portable air defense systems, provided there is adequate protection for non-combatants and ensuring IHL compliance5

The moratorium would not apply to:

Anti-vehicle or anti-materiel weapons
Non-lethal anti-personnel weapons
Research on ways of improving autonomous weapon technology to reduce non-combatant harm in future anti-personnel lethal autonomous weapon systems
Weapons that find, track, and engage specific individuals whom a human has decided should be engaged within a limited predetermined period of time and geographic region

Motivation:

This moratorium would pause development and deployment of anti-personnel lethal autonomous weapons systems to allow states to better understand the systemic risks of their use and to perform research that improves their safety, understandability, and effectiveness. Particular objectives could be to:

ensure that, prior to deployment, anti-personnel lethal autonomous weapons can be used in ways that are equal to or outperform humans in their compliance with IHL (other conditions may also apply prior to deployment being acceptable);
lay the groundwork for a potentially legally binding diplomatic instrument; and
decrease the geopolitical pressure on countries to deploy anti-personnel lethal autonomous weapons before they are reliable and well-understood.

Compliance Verification:

As part of a moratorium, states could consider various approaches to compliance verification. Potential approaches include:

Developing an industry cooperation regime analogous to that mandated under the Chemical Weapons Convention, whereby manufacturers must know their customers and report suspicious purchases of significant quantities of items such as fixed-wing drones, quadcopters, and other weaponizable robots.
Encouraging states to declare inventories of autonomous weapons for the purposes of transparency and confidence-building.
Facilitating scientific exchanges and military-to-military contacts to increase trust, transparency, and mutual understanding on topics such as compliance verification and safe operation of autonomous systems.
Designing control systems to require operator identity authentication and unalterable records of operation; enabling post-hoc compliance checks in case of plausible evidence of non-compliant autonomous weapon attacks.
Relating the quantity of weapons to corresponding capacities for human-in-the-loop operation of those weapons.
Designing weapons with air-gapped firing authorization circuits that are connected to the remote human operator but not to the on-board automated control system.
More generally, avoiding weapon designs that enable conversion from compliant to non-compliant categories or missions solely by software updates.
Designing weapons with formal proofs of relevant properties—e.g., the property that the weapon is unable to initiate an attack without human authorization. Proofs can, in principle, be provided using cryptographic techniques that allow the proofs to be checked by a third party without revealing any details of the underlying software.
Facilitate access to (non-classified) AI resources (software, data, methods for ensuring safe operation) to all states that remain in compliance and participate in transparency activities.

Component 2:

Define and universalize guiding principles for human involvement in the use of force.

Humans, not machines, are legal and moral agents in military operations.
It is a human responsibility to ensure that any attack, including one involving autonomous weapons, complies with the laws of war.
Humans responsible for initiating an attack must have sufficient understanding of the weapons, the targets, the environment and the context for use to determine whether that particular attack is lawful.
The attack must be bounded in space, time, target class, and means of attack in order for the determination about the lawfulness of that attack to be meaningful.
Militaries must invest in training, education, doctrine, policies, system design, and human-machine interfaces to ensure that humans remain responsible for attacks.

Component 3:

Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.

Specific potential measures include:

Developing safe rules for autonomous system behavior when in proximity to adversarial forces to avoid unintentional escalation or signaling. Examples include:

No-first-fire policy, so that autonomous weapons do not initiate hostilities without explicit human authorization.
A human must always be responsible for providing the mission for an autonomous system.
Taking steps to clearly distinguish exercises, patrols, reconnaissance, or other peacetime military operations from attacks in order to limit the possibility of reactions from adversary autonomous systems, such as autonomous air or coastal defenses.

Developing resilient communications links to ensure recallability of autonomous systems. Additionally, militaries should refrain from jamming others’ ability to recall their autonomous systems in order to afford the possibility of human correction in the event of unauthorized behavior.

Component 4:

Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states:

Targeted multilateral controls to prevent large-scale sale and transfer of weaponizable robots and related military-specific components for illicit use.
Employ measures to render weaponizable robots less harmful (e.g., geofencing; hard-wired kill switch; onboard control systems largely implemented in unalterable, non-reprogrammable hardware such as application-specific integrated circuits).

Component 5:

Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL-compliance in the use of future weapons, including:

Strategies to promote human moral engagement in decisions about the use of force
Risk assessment for autonomous weapon systems, including the potential for large-scale effects, geopolitical destabilization, accidental escalation, increased instability due to uncertainty about the relative military balance of power, and lowering thresholds to initiating conflict and for violence within conflict
Methodologies for ensuring the reliability and security of autonomous weapon systems
New techniques for verification, validation, explainability, characterization of failure conditions, and behavioral specifications.

About the Authors (in alphabetical order)

Ronald Arkin directs the Mobile Robot Laboratory at Georgia Tech.

Leslie Kaelbling is co-director of the Learning and Intelligent Systems Group at MIT.

Stuart Russell is a professor of computer science and engineering at UC Berkeley.

Dorsa Sadigh is an assistant professor of computer science and of electrical engineering at Stanford.

Paul Scharre directs the Technology and National Security Program at the Center for a New American Security (CNAS).

Bart Selman is a professor of computer science at Cornell.

Toby Walsh is a professor of artificial intelligence at the University of New South Wales (UNSW) Sydney.

The authors would like to thank Max Tegmark for organizing the three-day meeting from which this document was produced.

1 Autonomous Weapons System (AWS): A weapon system that, once activated, can select and engage targets without further intervention by a human operator. BACK TO TEXT↑

2 There is no implication that some authors would not personally support stronger recommendations. BACK TO TEXT↑

3 For ease of use, this working paper will frequently shorten “autonomous weapon system” to “autonomous weapon.” The terms should be treated as synonymous, with the understanding that “weapon” refers to the entire system: sensor, decision-making element, and munition. BACK TO TEXT↑

4 Anti-personnel lethal autonomous weapon system: A weapon system that, once activated, can select and engage dismounted human targets with lethal force and without further intervention by a human operator. BACK TO TEXT↑

5 The authors are not unanimous about this item because of concerns about ease of repurposing for mass-casualty missions targeting unarmed humans. The purpose of the lower limit on explosive payload weight would be to minimize the risk of such repurposing. There is precedent for using explosive weight limit as a mechanism of delineating between anti-personnel and anti-materiel weapons, such as the 1868 St. Petersburg Declaration Renouncing the Use, in Time of War, of Explosive Projectiles Under 400 Grammes Weight. BACK TO TEXT↑ Continue reading

Posted in Human Robots