Tag Archives: emotions

#432431 Why Slowing Down Can Actually Help Us ...

Leah Weiss believes that when we pay attention to how we do our work—our thoughts and feelings about what we do and why we do it—we can tap into a much deeper reservoir of courage, creativity, meaning, and resilience.

As a researcher, educator, and author, Weiss teaches a course called “Leading with Compassion and Mindfulness” at the Stanford Graduate School of Business, one of the most competitive MBA programs in the world, and runs programs at HopeLab.

Weiss is the author of the new book How We Work: Live Your Purpose, Reclaim your Sanity and Embrace the Daily Grind, endorsed by the Dalai Lama, among others. I caught up with Leah to learn more about how the practice of mindfulness can deepen our individual and collective purpose and passion.

Lisa Kay Solomon: We’re hearing a lot about mindfulness these days. What is mindfulness and why is it so important to bring into our work? Can you share some of the basic tenets of the practice?

Leah Weiss, PhD: Mindfulness is, in its most literal sense, “the attention to inattention.” It’s as simple as noticing when you’re not paying attention and then re-focusing. It is prioritizing what is happening right now over internal and external noise.

The ability to work well with difficult coworkers, handle constructive feedback and criticism, regulate emotions at work—all of these things can come from regular mindfulness practice.

Some additional benefits of mindfulness are a greater sense of compassion (both self-compassion and compassion for others) and a way to seek and find purpose in even mundane things (and especially at work). From the business standpoint, mindfulness at work leads to increased productivity and creativity, mostly because when we are focused on one task at a time (as opposed to multitasking), we produce better results.

We spend more time with our co-workers than we do with our families; if our work relationships are negative, we suffer both mentally and physically. Even worse, we take all of those negative feelings home with us at the end of the work day. The antidote to this prescription for unhappiness is to have clear, strong purpose (one third of people do not have purpose at work and this is a major problem in the modern workplace!). We can use mental training to grow as people and as employees.

LKS: What are some recommendations you would make to busy leaders who are working around the clock to change the world?

LW: I think the most important thing is to remember to tend to our relationship with ourselves while trying to change the world. If we’re beating up on ourselves all the time we’ll be depleted.

People passionate about improving the world can get into habits of believing self-care isn’t important. We demand a lot of ourselves. It’s okay to fail, to mess up, to make mistakes—what’s important is how we learn from those mistakes and what we tell ourselves about those instances. What is the “internal script” playing in your own head? Is it positive, supporting, and understanding? It should be. If it isn’t, you can work on it. And the changes you make won’t just improve your quality of life, they’ll make you more resilient to weather life’s inevitable setbacks.

A close second recommendation is to always consider where everyone in an organization fits and help everyone (including yourself) find purpose. When you know what your own purpose is and show others their purpose, you can motivate a team and help everyone on a team gain pride in and at work. To get at this, make sure to ask people on your team what really lights them up. What sucks their energy and depletes them? If we know our own answers to these questions and relate them to the people we work with, we can create more engaged organizations.

LKS: Can you envision a future where technology and mindfulness can work together?

LW: Technology and mindfulness are already starting to work together. Some artificial intelligence companies are considering things like mindfulness and compassion when building robots, and there are numerous apps that target spreading mindfulness meditations in a widely-accessible way.

LKS: Looking ahead at our future generations who seem more attached to their devices than ever, what advice do you have for them?

LW: It’s unrealistic to say “stop using your device so much,” so instead, my suggestion is to make time for doing things like scrolling social media and make the same amount of time for putting your phone down and watching a movie or talking to a friend. No matter what it is that you are doing, make sure you have meta-awareness or clarity about what you’re paying attention to. Be clear about where your attention is and recognize that you can be a steward of attention. Technology can support us in this or pull us away from this; it depends on how we use it.

Image Credit: frankie’s / Shutterstock.com Continue reading

Posted in Human Robots

#432036 The Power to Upgrade Our Own Biology Is ...

Upgrading our biology may sound like science fiction, but attempts to improve humanity actually date back thousands of years. Every day, we enhance ourselves through seemingly mundane activities such as exercising, meditating, or consuming performance-enhancing drugs, such as caffeine or adderall. However, the tools with which we upgrade our biology are improving at an accelerating rate and becoming increasingly invasive.

In recent decades, we have developed a wide array of powerful methods, such as genetic engineering and brain-machine interfaces, that are redefining our humanity. In the short run, such enhancement technologies have medical applications and may be used to treat many diseases and disabilities. Additionally, in the coming decades, they could allow us to boost our physical abilities or even digitize human consciousness.

What’s New?
Many futurists argue that our devices, such as our smartphones, are already an extension of our cortex and in many ways an abstract form of enhancement. According to philosophers Andy Clark and David Chalmers’ theory of extended mind, we use technology to expand the boundaries of the human mind beyond our skulls.

One can argue that having access to a smartphone enhances one’s cognitive capacities and abilities and is an indirect form of enhancement of its own. It can be considered an abstract form of brain-machine interface. Beyond that, wearable devices and computers are already accessible in the market, and people like athletes use them to boost their progress.

However, these interfaces are becoming less abstract.

Not long ago, Elon Musk announced a new company, Neuralink, with the goal of merging the human mind with AI. The past few years have seen remarkable developments in both the hardware and software of brain-machine interfaces. Experts are designing more intricate electrodes while programming better algorithms to interpret neural signals. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing brains to communicate with one another purely through brainwaves.

Ethical Challenges of Enhancement
There are many social and ethical implications of such advancements.

One of the most fundamental issues with cognitive and physical enhancement techniques is that they contradict the very definition of merit and success that society has relied on for millennia. Many forms of performance-enhancing drugs have been considered “cheating” for the longest time.

But perhaps we ought to revisit some of our fundamental assumptions as a society.

For example, we like to credit hard work and talent in a fair manner, where “fair” generally implies that an individual has acted in a way that has served him to merit his rewards. If you are talented and successful, it is considered to be because you chose to work hard and take advantage of the opportunities available to you. But by these standards, how much of our accomplishments can we truly be credited for?

For instance, the genetic lottery can have an enormous impact on an individual’s predisposition and personality, which can in turn affect factors such as motivation, reasoning skills, and other mental abilities. Many people are born with a natural ability or a physique that gives them an advantage in a particular area or predisposes them to learn faster. But is it justified to reward someone for excellence if their genes had a pivotal role in their path to success?

Beyond that, there are already many ways in which we take “shortcuts” to better mental performance. Seemingly mundane activities like drinking coffee, meditating, exercising, or sleeping well can boost one’s performance in any given area and are tolerated by society. Even the use of language can have positive physical and psychological effects on the human brain, which can be liberating to the individual and immensely beneficial to society at large. And let’s not forget the fact that some of us are born into more access to developing literacy than others.

Given all these reasons, one could argue that cognitive abilities and talents are currently derived more from uncontrollable factors and luck than we like to admit. If anything, technologies like brain-machine interfaces can enhance individual autonomy and allow one a choice of how capable they become.

As Karim Jebari points out (pdf), if a certain characteristic or trait is required to perform a particular role and an individual lacks this trait, would it be wrong to implement the trait through brain-machine interfaces or genetic engineering? How is this different from any conventional form of learning or acquiring a skill? If anything, this would be removing limitations on individuals that result from factors outside their control, such as biological predisposition (or even traits induced from traumatic experiences) to act or perform in a certain way.

Another major ethical concern is equality. As with any other emerging technology, there are valid concerns that cognitive enhancement tech will benefit only the wealthy, thus exacerbating current inequalities. This is where public policy and regulations can play a pivotal role in the impact of technology on society.

Enhancement technologies can either contribute to inequality or allow us to solve it. Educating and empowering the under-privileged can happen at a much more rapid rate, helping the overall rate of human progress accelerate. The “normal range” for human capacity and intelligence, however it is defined, could shift dramatically towards more positive trends.

Many have also raised concerns over the negative applications of government-led biological enhancement, including eugenics-like movements and super-soldiers. Naturally, there are also issues of safety, security, and well-being, especially within the early stages of experimentation with enhancement techniques.

Brain-machine interfaces, for instance, could have implications on autonomy. The interface involves using information extracted from the brain to stimulate or modify systems in order to accomplish a goal. This part of the process can be enhanced by implementing an artificial intelligence system onto the interface—one that exposes the possibility of a third party potentially manipulating individual’s personalities, emotions, and desires by manipulating the interface.

A Tool For Transcendence
It’s important to discuss these risks, not so that we begin to fear and avoid such technologies, but so that we continue to advance in a way that minimizes harm and allows us to optimize the benefits.

Stephen Hawking notes that “with genetic engineering, we will be able to increase the complexity of our DNA, and improve the human race.” Indeed, the potential advantages of modifying biology are revolutionary. Doctors would gain access to a powerful tool to tackle disease, allowing us to live longer and healthier lives. We might be able to extend our lifespan and tackle aging, perhaps a critical step to becoming a space-faring species. We may begin to modify the brain’s building blocks to become more intelligent and capable of solving grand challenges.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. Human enhancement is bringing us closer to such a world—it could allow us to take control of our evolution and truly shape the future of our species.

Image Credit: GrAl/ Shutterstock.com Continue reading

Posted in Human Robots

#431592 Reactive Content Will Get to Know You ...

The best storytellers react to their audience. They look for smiles, signs of awe, or boredom; they simultaneously and skillfully read both the story and their sitters. Kevin Brooks, a seasoned storyteller working for Motorola’s Human Interface Labs, explains, “As the storyteller begins, they must tune in to… the audience’s energy. Based on this energy, the storyteller will adjust their timing, their posture, their characterizations, and sometimes even the events of the story. There is a dialog between audience and storyteller.”
Shortly after I read the script to Melita, the latest virtual reality experience from Madrid-based immersive storytelling company Future Lighthouse, CEO Nicolas Alcalá explained to me that the piece is an example of “reactive content,” a concept he’s been working on since his days at Singularity University.

For the first time in history, we have access to technology that can merge the reactive and affective elements of oral storytelling with the affordances of digital media, weaving stunning visuals, rich soundtracks, and complex meta-narratives in a story arena that has the capability to know you more intimately than any conventional storyteller could.
It’s no understatement to say that the storytelling potential here is phenomenal.
In short, we can refer to content as reactive if it reads and reacts to users based on their body rhythms, emotions, preferences, and data points. Artificial intelligence is used to analyze users’ behavior or preferences to sculpt unique storylines and narratives, essentially allowing for a story that changes in real time based on who you are and how you feel.
The development of reactive content will allow those working in the industry to go one step further than simply translating the essence of oral storytelling into VR. Rather than having a narrative experience with a digital storyteller who can read you, reactive content has the potential to create an experience with a storyteller who knows you.
This means being able to subtly insert minor personal details that have a specific meaning to the viewer. When we talk to our friends we often use experiences we’ve shared in the past or knowledge of our audience to give our story as much resonance as possible. Targeting personal memories and aspects of our lives is a highly effective way to elicit emotions and aid in visualizing narratives. When you can do this with the addition of visuals, music, and characters—all lifted from someone’s past—you have the potential for overwhelmingly engaging and emotionally-charged content.
Future Lighthouse inform me that for now, reactive content will rely primarily on biometric feedback technology such as breathing, heartbeat, and eye tracking sensors. A simple example would be a story in which parts of the environment or soundscape change in sync with the user’s heartbeat and breathing, or characters who call you out for not paying attention.
The next step would be characters and situations that react to the user’s emotions, wherein algorithms analyze biometric information to make inferences about states of emotional arousal (“why are you so nervous?” etc.). Another example would be implementing the use of “arousal parameters,” where the audience can choose what level of “fear” they want from a VR horror story before algorithms modulate the experience using information from biometric feedback devices.
The company’s long-term goal is to gather research on storytelling conventions and produce a catalogue of story “wireframes.” This entails distilling the basic formula to different genres so they can then be fleshed out with visuals, character traits, and soundtracks that are tailored for individual users based on their deep data, preferences, and biometric information.
The development of reactive content will go hand in hand with a renewed exploration of diverging, dynamic storylines, and multi-narratives, a concept that hasn’t had much impact in the movie world thus far. In theory, the idea of having a story that changes and mutates is captivating largely because of our love affair with serendipity and unpredictability, a cultural condition theorist Arthur Kroker refers to as the “hypertextual imagination.” This feeling of stepping into the unknown with the possibility of deviation from the habitual translates as a comforting reminder that our own lives can take exciting and unexpected turns at any moment.
The inception of the concept into mainstream culture dates to the classic Choose Your Own Adventure book series that launched in the late 70s, which in its literary form had great success. However, filmic takes on the theme have made somewhat less of an impression. DVDs like I’m Your Man (1998) and Switching (2003) both use scene selection tools to determine the direction of the storyline.
A more recent example comes from Kino Industries, who claim to have developed the technology to allow filmmakers to produce interactive films in which viewers can use smartphones to quickly vote on which direction the narrative takes at numerous decision points throughout the film.
The main problem with diverging narrative films has been the stop-start nature of the interactive element: when I’m immersed in a story I don’t want to have to pick up a controller or remote to select what’s going to happen next. Every time the audience is given the option to take a new path (“press this button”, “vote on X, Y, Z”) the narrative— and immersion within that narrative—is temporarily halted, and it takes the mind a while to get back into this state of immersion.
Reactive content has the potential to resolve these issues by enabling passive interactivity—that is, input and output without having to pause and actively make decisions or engage with the hardware. This will result in diverging, dynamic narratives that will unfold seamlessly while being dependent on and unique to the specific user and their emotions. Passive interactivity will also remove the game feel that can often be a symptom of interactive experiences and put a viewer somewhere in the middle: still firmly ensconced in an interactive dynamic narrative, but in a much subtler way.
While reading the Melita script I was particularly struck by a scene in which the characters start to engage with the user and there’s a synchronicity between the user’s heartbeat and objects in the virtual world. As the narrative unwinds and the words of Melita’s character get more profound, parts of the landscape, which seemed to be flashing and pulsating at random, come together and start to mimic the user’s heartbeat.
In 2013, Jane Aspell of Anglia Ruskin University (UK) and Lukas Heydrich of the Swiss Federal Institute of Technology proved that a user’s sense of presence and identification with a virtual avatar could be dramatically increased by syncing the on-screen character with the heartbeat of the user. The relationship between bio-digital synchronicity, immersion, and emotional engagement is something that will surely have revolutionary narrative and storytelling potential.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#431389 Tech Is Becoming Emotionally ...

Many people get frustrated with technology when it malfunctions or is counterintuitive. The last thing people might expect is for that same technology to pick up on their emotions and engage with them differently as a result.
All of that is now changing. Computers are increasingly able to figure out what we’re feeling—and it’s big business.
A recent report predicts that the global affective computing market will grow from $12.2 billion in 2016 to $53.98 billion by 2021. The report by research and consultancy firm MarketsandMarkets observed that enabling technologies have already been adopted in a wide range of industries and noted a rising demand for facial feature extraction software.
Affective computing is also referred to as emotion AI or artificial emotional intelligence. Although many people are still unfamiliar with the category, researchers in academia have already discovered a multitude of uses for it.
At the University of Tokyo, Professor Toshihiko Yamasaki decided to develop a machine learning system that evaluates the quality of TED Talk videos. Of course, a TED Talk is only considered to be good if it resonates with a human audience. On the surface, this would seem too qualitatively abstract for computer analysis. But Yamasaki wanted his system to watch videos of presentations and predict user impressions. Could a machine learning system accurately evaluate the emotional persuasiveness of a speaker?
Yamasaki and his colleagues came up with a method that analyzed correlations and “multimodal features including linguistic as well as acoustic features” in a dataset of 1,646 TED Talk videos. The experiment was successful. The method obtained “a statistically significant macro-average accuracy of 93.3 percent, outperforming several competitive baseline methods.”
A machine was able to predict whether or not a person would emotionally connect with other people. In their report, the authors noted that these findings could be used for recommendation purposes and also as feedback to the presenters, in order to improve the quality of their public presentation. However, the usefulness of affective computing goes far beyond the way people present content. It may also transform the way they learn it.
Researchers from North Carolina State University explored the connection between students’ affective states and their ability to learn. Their software was able to accurately predict the effectiveness of online tutoring sessions by analyzing the facial expressions of participating students. The software tracked fine-grained facial movements such as eyebrow raising, eyelid tightening, and mouth dimpling to determine engagement, frustration, and learning. The authors concluded that “analysis of facial expressions has great potential for educational data mining.”
This type of technology is increasingly being used within the private sector. Affectiva is a Boston-based company that makes emotion recognition software. When asked to comment on this emerging technology, Gabi Zijderveld, chief marketing officer at Affectiva, explained in an interview for this article, “Our software measures facial expressions of emotion. So basically all you need is our software running and then access to a camera so you can basically record a face and analyze it. We can do that in real time or we can do this by looking at a video and then analyzing data and sending it back to folks.”
The technology has particular relevance for the advertising industry.
Zijderveld said, “We have products that allow you to measure how consumers or viewers respond to digital content…you could have a number of people looking at an ad, you measure their emotional response so you aggregate the data and it gives you insight into how well your content is performing. And then you can adapt and adjust accordingly.”
Zijderveld explained that this is the first market where the company got traction. However, they have since packaged up their core technology in software development kits or SDKs. This allows other companies to integrate emotion detection into whatever they are building.
By licensing its technology to others, Affectiva is now rapidly expanding into a wide variety of markets, including gaming, education, robotics, and healthcare. The core technology is also used in human resources for the purposes of video recruitment. The software analyzes the emotional responses of interviewees, and that data is factored into hiring decisions.
Richard Yonck is founder and president of Intelligent Future Consulting and the author of a book about our relationship with technology. “One area I discuss in Heart of the Machine is the idea of an emotional economy that will arise as an ecosystem of emotionally aware businesses, systems, and services are developed. This will rapidly expand into a multi-billion-dollar industry, leading to an infrastructure that will be both emotionally responsive and potentially exploitive at personal, commercial, and political levels,” said Yonck, in an interview for this article.
According to Yonck, these emotionally-aware systems will “better anticipate needs, improve efficiency, and reduce stress and misunderstandings.”
Affectiva is uniquely positioned to profit from this “emotional economy.” The company has already created the world’s largest emotion database. “We’ve analyzed a little bit over 4.7 million faces in 75 countries,” said Zijderveld. “This is data first and foremost, it’s data gathered with consent. So everyone has opted in to have their faces analyzed.”
The vastness of that database is essential for deep learning approaches. The software would be inaccurate if the data was inadequate. According to Zijderveld, “If you don’t have massive amounts of data of people of all ages, genders, and ethnicities, then your algorithms are going to be pretty biased.”
This massive database has already revealed cultural insights into how people express emotion. Zijderveld explained, “Obviously everyone knows that women are more expressive than men. But our data confirms that, but not only that, it can also show that women smile longer. They tend to smile more often. There’s also regional differences.”
Yonck believes that affective computing will inspire unimaginable forms of innovation and that change will happen at a fast pace.
He explained, “As businesses, software, systems, and services develop, they’ll support and make possible all sorts of other emotionally aware technologies that couldn’t previously exist. This leads to a spiral of increasingly sophisticated products, just as happened in the early days of computing.”
Those who are curious about affective technology will soon be able to interact with it.
Hubble Connected unveiled the Hubble Hugo at multiple trade shows this year. Hugo is billed as “the world’s first smart camera,” with emotion AI video analytics powered by Affectiva. The product can identify individuals, figure out how they’re feeling, receive voice commands, video monitor your home, and act as a photographer and videographer of events. Media can then be transmitted to the cloud. The company’s website describes Hugo as “a fun pal to have in the house.”
Although he sees the potential for improved efficiencies and expanding markets, Richard Yonck cautions that AI technology is not without its pitfalls.
“It’s critical that we understand we are headed into very unknown territory as we develop these systems, creating problems unlike any we’ve faced before,” said Yonck. “We should put our focus on ensuring AI develops in a way that represents our human values and ideals.”
Image Credit: Kisan / Shutterstock.com Continue reading

Posted in Human Robots

#431168 Audrey Hepburn’s smiling humanoid ...

Meet Sophia, a humanoid robot that looks a bit like Audrey Hepburn and has sixty facial expressions, including to smile. She can also interact with humans, and her creator’s goal is to make machines smarter than humans, have the ability … Continue reading

Posted in Human Robots