Tag Archives: educational

#430855 Why Education Is the Hardest Sector of ...

We’ve all heard the warning cries: automation will disrupt entire industries and put millions of people out of jobs. In fact, up to 45 percent of existing jobs can be automated using current technology.
However, this may not necessarily apply to the education sector. After a detailed analysis of more than 2,000-plus work activities for more than 800 occupations, a report by McKinsey & Co states that of all the sectors examined, “…the technical feasibility of automation is lowest in education.”
There is no doubt that technological trends will have a powerful impact on global education, both by improving the overall learning experience and by increasing global access to education. Massive open online courses (MOOCs), chatbot tutors, and AI-powered lesson plans are just a few examples of the digital transformation in global education. But will robots and artificial intelligence ever fully replace teachers?
The Most Difficult Sector to Automate
While various tasks revolving around education—like administrative tasks or facilities maintenance—are open to automation, teaching itself is not.
Effective education involves more than just transfer of information from a teacher to a student. Good teaching requires complex social interactions and adaptation to the individual student’s learning needs. An effective teacher is not just responsive to each student’s strengths and weaknesses, but is also empathetic towards the student’s state of mind. It’s about maximizing human potential.
Furthermore, students don’t just rely on effective teachers to teach them the course material, but also as a source of life guidance and career mentorship. Deep and meaningful human interaction is crucial and is something that is very difficult, if not impossible, to automate.
Automating teaching is an example of a task that would require artificial general intelligence (as opposed to narrow or specific intelligence). In other words, this is the kind of task that would require an AI that understands natural human language, can be empathetic towards emotions, plan, strategize and make impactful decisions under unpredictable circumstances.
This would be the kind of machine that can do anything a human can do, and it doesn’t exist—at least, not yet.
We’re Getting There
Let’s not forget how quickly AI is evolving. Just because it’s difficult to fully automate teaching, it doesn’t mean the world’s leading AI experts aren’t trying.
Meet Jill Watson, the teaching assistant from Georgia Institute of Technology. Watson isn’t your average TA. She’s an IBM-powered artificial intelligence that is being implemented in universities around the world. Watson is able to answer students’ questions with 97 percent certainty.
Technologies like this also have applications in grading and providing feedback. Some AI algorithms are being trained and refined to perform automatic essay scoring. One project has achieved a 0.945 correlation with human graders.
All of this will have a remarkable impact on online education as we know it and dramatically increase online student retention rates.

Any student with a smartphone can access a wealth of information and free courses from universities around the world. MOOCs have allowed valuable courses to become available to millions of students. But at the moment, not all participants can receive customized feedback for their work. Currently, this is limited by manpower, but in the future that may not be the case.
What chatbots like Jill Watson allow is the opportunity for hundreds of thousands, if not millions, of students to have their work reviewed and all their questions answered at a minimal cost.
AI algorithms also have a significant role to play in personalization of education. Every student is unique and has a different set of strengths and weaknesses. Data analysis can be used to improve individual student results, assess each student’s strengths and weaknesses, and create mass-customized programs. Algorithms can analyze student data and consequently make flexible programs that adapt to the learner based on real-time feedback. According to the McKinsey Global Institute, all of this data in education could unlock between $900 billion and $1.2 trillion in global economic value.
Beyond Automated Teaching
It’s important to recognize that technological automation alone won’t fix the many issues in our global education system today. Dominated by outdated curricula, standardized tests, and an emphasis on short-term knowledge, many experts are calling for a transformation of how we teach.
It is not enough to simply automate the process. We can have a completely digital learning experience that continues to focus on outdated skills and fails to prepare students for the future. In other words, we must not only be innovative with our automation capabilities, but also with educational content, strategy, and policies.
Are we equipping students with the most important survival skills? Are we inspiring young minds to create a better future? Are we meeting the unique learning needs of each and every student? There’s no point automating and digitizing a system that is already flawed. We need to ensure the system that is being digitized is itself being transformed for the better.
Stock Media provided by davincidig / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Why Education Is the Hardest Sector of ...

#430734 Why XPRIZE Is Asking Writers to Take Us ...

In a world of accelerating change, educating the public about the implications of technological advancements is extremely important. We can continue to write informative articles and speculate about the kind of future that lies ahead. Or instead, we can take readers on an immersive journey by using science fiction to paint vivid images of the future for society.
The XPRIZE Foundation recently announced a science fiction storytelling competition. In recent years, the organization has backed and launched a range of competitions to propel innovation in science and technology. These have been aimed at a variety of challenges, such as transforming the lives of low-literacy adults, tackling climate change, and creating water from thin air.
Their sci-fi writing competition asks participants to envision a groundbreaking future for humanity. The initiative, in partnership with Japanese airline ANA, features 22 sci-fi stories from noteworthy authors that are now live on the website. Each of these stories is from the perspective of a different passenger on a plane that travels 20 years into the future through a wormhole. Contestants will compete to tell the story of the passenger in Seat 14C.
In addition to the competition, XPRIZE has brought together a science fiction advisory council to work with the organization and imagine what the future will look like. According to Peter Diamandis, founder and executive chairman, “As the future becomes harder and harder to predict, we look forward to engaging some of the world’s most visionary storytellers to help us imagine what’s just beyond the horizon and chart a path toward a future of abundance.”
The Importance of Science Fiction
Why is an organization like XPRIZE placing just as much importance on fiction as it does on reality? As Isaac Asimov has pointed out, “Modern science fiction is the only form of literature that consistently considers the nature of the changes that face us.” While the rest of the world reports on a new invention, sci-fi authors examine how these advancements affect the human condition.
True science fiction is distinguished from pure fantasy in that everything that happens is within the bounds of the physical laws of the universe. We’ve already seen how sci-fi can inspire generations and shape the future. 3D printers, wearable technology, and smartphones were first seen in Star Trek. Targeted advertising and air touch technology was first seen in Philip K. Dick’s 1958 story “The Minority Report.” Tanning beds, robot vacuums, and flatscreen TVs were seen in The Jetsons. The internet and a world of global instant communication was predicted by Arthur C. Clarke in his work long before it became reality.
Sci-fi shows like Black Mirror or Star Trek aren’t just entertainment. They allow us to imagine and explore the influence of technology on humanity. For instance, how will artificial intelligence impact human relationships? How will social media affect privacy? What if we encounter alien life? Good sci-fi stories take us on journeys that force us to think critically about the societal impacts of technological advancements.
As sci-fi author Yaasha Moriah points out, the genre is universal because “it tackles hard questions about human nature, morality, and the evolution of society, all through the narrative of speculation about the future. If we continue to do A, will it necessarily lead to problems B and C? What implicit lessons are being taught when we insist on a particular policy? When we elevate the importance of one thing over another—say, security over privacy—what could be the potential benefits and dangers of that mentality? That’s why science fiction has such an enduring appeal. We want to explore deep questions, without being preached at. We want to see the principles in action, and observe their results.”
An Extension of STEAM Education
At its core, this genre is a harmonious symbiosis between two distinct disciplines: science and literature. It is an extension of STEAM education, an educational approach that combines science, technology, engineering, the arts, and mathematics. Story-telling with science fiction allows us to use the arts in order to educate and engage the public about scientific advancements and its implications.
According to the National Science Foundation, research on art-based learning of STEM, including the use of narrative writing, works “beyond expectation.” It has been shown to have a powerful impact on creative thinking, collaborative behavior and application skills.
What does it feel like to travel through a wormhole? What are some ethical challenges of AI? How could we terraform Mars? For decades, science fiction writers and producers have answered these questions through the art of storytelling.
What better way to engage more people with science and technology than through sparking their imaginations? The method makes academic subject areas many traditionally perceived as boring or dry far more inspiring and engaging.
A Form of Time Travel
XPRIZE’s competition theme of traveling 20 years into the future through a wormhole is an appropriate beacon for the genre. In many ways, sci-fi is a precautionary form of time travel. Before we put a certain technology, scientific invention, or policy to use, we can envision and explore what our world would be like if we were to do so.
Sci-fi lets us explore different scenarios for the future of humanity before deciding which ones are more desirable. Some of these scenarios may be radically beyond our comfort zone. Yet when we’re faced with the seemingly impossible, we must remind ourselves that if something is within the domain of the physical laws of the universe, then it’s absolutely possible.
Stock Media provided by NASA_images / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Why XPRIZE Is Asking Writers to Take Us ...

#427791 Robot Operating System (ROS) continues ...

Today by far the most commonly used robotics software is ROS, which stands for Robot Operating System. This is an open source software, and the most number of developers and robotics users are involved with this program with an ever increasing rate. It contains set of libraries, algorithms, developer tools and drivers for developing robotics projects. The first release of ROS was in 2010, and as of end of 2016, ROS has reached its 10th official release, which is called “ROS Kinetic Kame”. There are translations to 11 languages other than English, which are: German, Spanish, French, Italian, Japanese, Turkish, Korean, Portuguese, Russian, Thai and Chinese. It currently has 2000+ software libraries, which keeps increasing every year.
Many robots use ROS now, including but not limited to hobby robots, drones, educational or advanced humanoid robots, domestic robots including cleaning robot vacuums, cooking robots or telepresence robots and more, robot arms, farming robots, industrial robots, even Robonaut of NASA in space or the four legged military robots in development. A list of robots which use ROS can be found here: http://wiki.ros.org/Robots.
We were checking the Alexa.Com ranking of ROS since few years, in order to track the increase in usage, and we believe it is time to share it now, as we have enough data. The numbers on the left are dates we looked and the numbers on the right indicate the ranking of Ros.Org website from top, among all websites in the world:
May 2011: 189,000 th in the world, from top, among all other websites
April 2012: 187,900 th
January 2014: 107,821
May 2014: 112,236
September 2014: 83,875 (7219 in Canada, the country where it is most accessed)
January 2015: 83,556 (4,258 in Canada)
February 2015 : 75,680 (33185 in USA)
April 2015: 59,200 (31,334 in USA)
August 2015: 65,754 (50,132 in USA)
September 2016: 30,201 (China 5073)
This chart shows the increasing rank of ros.org among other websites in the world, which is a good indicator of its growth. The numbers on the left represent the site’s ranking from the top, among all other sites in the world. Chart Copyright: Robokingdom LLC.

As can be seen here, in May 2011, when we first checked this ranking, ROS.org was at 189,000 th place in the world from the top among all other websites in terms of unique visitors that visit the site, and it almost continuously increased its ranking. As of September 2016, it is now the 30,201st most reached website in the world, with mostly being accessed in China (5073 from top in China). Let’s not forget that even if it’s position remained the same, let alone going up, it would still mean the traffic of the site was going up, as every year there are more websites in the world which means the same ranking means better place and more traffic. The ranking of 30,201 means ROS.org is a very high traffic website in the world right now, being accessed probably by at least hundreds of thousands of people every day, with no indication of slowing down its rise yet.
The most important result of all of this, is that the use of robots is increasing, both in terms of number and type (when you look at the type of robots that use ros, as it also increases in variety all the time).
From Alexa, we were also able to see, from publicly available information, that the percentage of reach among countries for ROS.org is as follows:
China 47.5%
USA 11.5%
Japan 8.7%
South Korea 3.5%
Germany 3.4%
This also shows us that in China, a lot of things are going on for robotics development right now, as it gets most of its traffic from there with 47.5%. USA then follows with 11.5% and Japan is third with 8.7%.
With ROS, any type of sensors can be controlled, including 1d/2d range sensors, 3d range finders and cameras, audio/speech recognition sensors, cameras, environmental sensors, force/torque/touch sensors, motion capture, pose estimation, power supply, RFID, and sensor interfaces.
In ros.org site, in addition to all packages, there are also extensive tutorials and a discussion board that one can ask questions and share knowledge.
ROS also has an industrial section, the version of software modified for industrial applications. It is called ROS industrial, and can be reached at: http://rosindustrial.org/. Although we see domestic robots with new abilities or advanced research projects that aim to develop capabilities of robotics every year, according to the results of a study that is shown on http://rosindustrial.org/the-challenge/ website, the abilities of industrial robots are not progressing and the abilities are restricted to welding, material handling, dispensing, coating (although we know that they do additional tasks such as packaging, inspection, labeling etc…). ROS Industrial aims to solve this challenge by providing a common skeleton to all developers, with its extensive and stronger software architecture, than other individual robotics programs.
The post Robot Operating System (ROS) continues its growth appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Robot Operating System (ROS) continues ...