Tag Archives: display

#432009 How Swarm Intelligence Is Making Simple ...

As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found throughout nature, but researchers have recently begun using it to transform various fields such as robotics, data mining, medicine, and blockchains.

Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create superhighways of food and information, wage war, and enslave other ant species—all of which are beyond the comprehension of any single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that doesn’t actually exist.

It happens by a process called stigmergy. Simply put, a small change by a group member causes other members to behave differently, leading to a new pattern of behavior.

When an ant finds a food source, it marks the path with pheromones. This attracts other ants to that path, leads them to the food source, and prompts them to mark the same path with more pheromones. Over time, the most efficient route will become the superhighway, as the faster and easier a path is, the more ants will reach the food and the more pheromones will be on the path. Thus, it looks as if a more intelligent being chose the best path, but it emerged from the tiny, simple changes made by individuals.

So what does this mean for humans? Well, a lot. In the past few decades, researchers have developed numerous algorithms and metaheuristics, such as ant colony optimization and particle swarm optimization, and they are rapidly being adopted.

Swarm Robotics
A swarm of robots would work on the same principles as an ant colony: each member has a simple set of rules to follow, leading to self-organization and self-sufficiency.

For example, researchers at Georgia Robotics and InTelligent Systems (GRITS) created a small swarm of simple robots that can spell and play piano. The robots cannot communicate, but based solely on the position of surrounding robots, they are able to use their specially-created algorithm to determine the optimal path to complete their task.

This is also immensely useful for drone swarms.

Last February, Ehang, an aviation company out of China, created a swarm of a thousand drones that not only lit the sky with colorful, intricate displays, but demonstrated the ability to improvise and troubleshoot errors entirely autonomously.

Further, just recently, the University of Cambridge and Koc University unveiled their idea for what they call the Energy Neutral Internet of Drones. Amazingly, this drone swarm would take initiative to share information or energy with other drones that did not receive a communication or are running low on energy.

Militaries all of the world are utilizing this as well.

Last year, the US Department of Defense announced it had successfully tested a swarm of miniature drones that could carry out complex missions cheaper and more efficiently. They claimed, “The micro-drones demonstrated advanced swarm behaviors such as collective decision-making, adaptive formation flying, and self-healing.”

Some experts estimate at least 30 nations are actively developing drone swarms—and even submersible drones—for military missions, including intelligence gathering, missile defense, precision missile strikes, and enhanced communication.

NASA also plans on deploying swarms of tiny spacecraft for space exploration, and the medical community is looking into using swarms of nanobots for precision delivery of drugs, microsurgery, targeting toxins, and biological sensors.

What If Humans Are the Ants?
The strength of any blockchain comes from the size and diversity of the community supporting it. Cryptocurrencies like Bitcoin, Ethereum, and Litecoin are driven by the people using, investing in, and, most importantly, mining them so their blockchains can function. Without an active community, or swarm, their blockchains wither away.

When viewed from a great height, a blockchain performs eerily like an ant colony in that it will naturally find the most efficient way to move vast amounts of information.

Miners compete with each other to perform the complex calculations necessary to add another block, for which the winner is rewarded with the blockchain’s native currency and agreed-upon fees. Of course, the miner with the more powerful computers is more likely to win the reward, thereby empowering the winner’s ability to mine and receive even more rewards. Over time, fewer and fewer miners are going to exist, as the winners are able to more efficiently shoulder more of the workload, in much the same way that ants build superhighways.

Further, a company called Unanimous AI has developed algorithms that allow humans to collectively make predictions. So far, the AI algorithms and their human participants have made some astoundingly accurate predictions, such as the first four winning horses of the Kentucky Derby, the Oscar winners, the Stanley Cup winners, and others. The more people involved in the swarm, the greater their predictive power will be.

To be clear, this is not a prediction based on group consensus. Rather, the swarm of humans uses software to input their opinions in real time, thus making micro-changes to the rest of the swarm and the inputs of other members.

Studies show that swarm intelligence consistently outperforms individuals and crowds working without the algorithms. While this is only the tip of the iceberg, some have suggested swarm intelligence can revolutionize how doctors diagnose a patient or how products are marketed to consumers. It might even be an essential step in truly creating AI.

While swarm intelligence is an essential part of many species’ success, it’s only a matter of time before humans harness its effectiveness as well.

Image Credit: Nature Bird Photography / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431414 This Week’s Awesome Stories From ...

QUANTUM COMPUTING IBM Raises the Bar With a 50-Qubit Quantum ComputerWill Knight | MIT Technology Review “50 qubits is a significant landmark in progress toward practical quantum computers. Other systems built so far have had limited capabilities and could perform only calculations that could also be done on a conventional supercomputer. A 50-qubit machine can do things that are extremely difficult to simulate without quantum technology.”
ARTIFICIAL INTELLIGENCE AI Startup Embodied Intelligence Wants Robots to Learn From Humans in Virtual RealityEvan Ackerman | IEEE Spectrum “This is a defining problem for robotics right now: Robots can do anything you want, as long as you tell them exactly what that is, every single time… This week, Abbeel and several of his colleagues from UC Berkeley and OpenAI are announcing a new startup (with US $7 million in seed funding) called Embodied Intelligence, which will ‘enable industrial robot arms to perceive and act like humans instead of just strictly following pre-programmed trajectories.’”
TRANSPORTATION Uber’s Plan to Launch Flying Cars in LA by 2020 Really Could Take OffJack Stewart | Wired“After grabbing an elevator, passengers will tap their phones to pass through a turnstile and access the roof. Presumably they’ve been prescreened, because there’s no airport-style security in evidence. An agent in an orange vest takes a group of four passengers out to the waiting aircraft. There’s a pilot up front, and a small overhead display with the estimated arrival time.”
ROBOTICS This Robot Swarm Finishes Your Grocery Shopping in MinutesJesus Diaz | Fast Company “At an Ocado warehouse in the English town of Andover, a swarm of 1,000 robots races over a grid the size of a soccer field, filling orders and replacing stock. The new system, which went live earlier this year, can fulfill a 50-item order in under five minutes—something that used to take about two hours at human-only facilities. It’s been so successful that Ocado is now building a new warehouse that’s three times larger in Erith, southeast of London.”
BIOTECH Meet the Scientists Building a Library of Designer DrugsAngela Chen | The Verge“One of the most prominent categories of designer drugs are those intended to mimic marijuana, called synthetic cannabinoids. Marijuana, or cannabis, is widely considered one of the safest drugs, but synthetic cannabinoids are some of the most dangerous synthetic drugs.”
Image Credit: anucha sirivisansuwan / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431178 Soft Robotics Releases Development Kit ...

Cambridge, MA – Soft Robotics Inc, which has built a fundamentally new class of robotic grippers, announced the release of its expanded and upgraded Soft Robotics Development Kit; SRDK 2.0.

The Soft Robotics Development Kit 2.0 comes complete with:

Robot tool flange mounting plate
4, 5 and 6 position hub plates
Tool Center Point
Soft Robotics Control Unit G2
6 rail mounted, 4 accordion actuator modules
Custom pneumatic manifold
Mounting hardware and accessories

Where the SRDK 1.0 included 5 four accordion actuator modules and the opportunity to create a gripper containing two to five actuators, The SRDK 2.0 contains 6 four accordion actuator modules plus the addition of a six position hub allowing users the ability to configure six actuator test tools. This expands use of the Development Kit to larger product applications, such as: large bagged and pouched items, IV bags, bags of nuts, bread and other food items.

SRDK 2.0 also contains an upgraded Soft Robotics Control Unit (SRCU G2) – the proprietary system that controls all software and hardware with one turnkey pneumatic operation. The upgraded SRCU features new software with a cleaner, user friendly interface and an IP65 rating. Highly intuitive, the software is able to store up to eight grip profiles and allows for very precise adjustments to actuation and vacuum.

Also new with the release of SRDK 2.0, is the introduction of several accessory kits that will allow for an expanded number of configurations and product applications available for testing.

Accessory Kit 1 – For SRDK 1.0 users only – includes the six position hub and 4 accordion actuators now included in SRDK 2.0
Accessory Kit 2 – For SRDK 1.0 or 2.0 users – includes 2 accordion actuators
Accessory Kit 3 – For SRDK 1.0 or 2.0 users – includes 3 accordion actuators

The shorter 2 and 3 accordion actuators provide increased stability for high-speed applications, increased placement precision, higher grip force capabilities and are optimized for gripping small, shallow objects.

Designed to plug and play with any existing robot currently in the market, the Soft Robotics Development Kit 2.0 allows end-users and OEM Integrators the ability to customize, test and validate their ideal Soft Robotics solution, with their own equipment, in their own environment.

Once an ideal solution has been found, the Soft Robotics team will take those exact specifications and build a production-grade tool for implementation into the manufacturing line. And, it doesn’t end there. Created to be fully reusable, the process – configure, test, validate, build, production – can start over again as many times as needed.

See the new SRDK 2.0 on display for the first time at PACK EXPO Las Vegas, September 25 – 27, 2017 in Soft Robotics booth S-5925.

Learn more about the Soft Robotics Development Kit at www.softroboticsinc.com/srdk.
Photo Credit: Soft Robotics – www.softroboticsinc.com
###
About Soft Robotics
Soft Robotics designs and builds soft robotic gripping systems and automation solutions
that can grasp and manipulate items of varying size, shape and weight. Spun out of the
Whitesides Group at Harvard University, Soft Robotics is the only company to be
commercializing this groundbreaking and proprietary technology platform. Today, the
company is a global enterprise solving previously off-limits automation challenges for
customers in food & beverage, advanced manufacturing and ecommerce. Soft Robotics’
engineers are building an ecosystem of robots, control systems, data and machine
learning to enable the workplace of the future. For more information, please visit
www.softroboticsinc.com.

Media contact:
Jennie Kondracki
The Kondracki Group, LLC
262-501-4507
jennie@kondrackigroup.com
The post Soft Robotics Releases Development Kit 2.0 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment