Tag Archives: developing

#434749 IHMC Developing New Gymnast-Inspired ...

Hydraulic actuators will give Nadia a unique combination of flexibility and power Continue reading

Posted in Human Robots

#434701 3 Practical Solutions to Offset ...

In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.

The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.

As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?

Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.

First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.

Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.

Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.

At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.

Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.

Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.

Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.

Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.

Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.

Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.

Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).

The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?

Figure 2. Labor laws have historically adjusted as technology and society progressed

Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.

A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.

Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.

Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.

We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.

However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.

Note: The full paper this article is based on is available here.

Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading

Posted in Human Robots

#434673 The World’s Most Valuable AI ...

It recognizes our faces. It knows the videos we might like. And it can even, perhaps, recommend the best course of action to take to maximize our personal health.

Artificial intelligence and its subset of disciplines—such as machine learning, natural language processing, and computer vision—are seemingly becoming integrated into our daily lives whether we like it or not. What was once sci-fi is now ubiquitous research and development in company and university labs around the world.

Similarly, the startups working on many of these AI technologies have seen their proverbial stock rise. More than 30 of these companies are now valued at over a billion dollars, according to data research firm CB Insights, which itself employs algorithms to provide insights into the tech business world.

Private companies with a billion-dollar valuation were so uncommon not that long ago that they were dubbed unicorns. Now there are 325 of these once-rare creatures, with a combined valuation north of a trillion dollars, as CB Insights maintains a running count of this exclusive Unicorn Club.

The subset of AI startups accounts for about 10 percent of the total membership, growing rapidly in just 4 years from 0 to 32. Last year, an unprecedented 17 AI startups broke the billion-dollar barrier, with 2018 also a record year for venture capital into private US AI companies at $9.3 billion, CB Insights reported.

What exactly is all this money funding?

AI Keeps an Eye Out for You
Let’s start with the bad news first.

Facial recognition is probably one of the most ubiquitous applications of AI today. It’s actually a decades-old technology often credited to a man named Woodrow Bledsoe, who used an instrument called a RAND tablet that could semi-autonomously match faces from a database. That was in the 1960s.

Today, most of us are familiar with facial recognition as a way to unlock our smartphones. But the technology has gained notoriety as a surveillance tool of law enforcement, particularly in China.

It’s no secret that the facial recognition algorithms developed by several of the AI unicorns from China—SenseTime, CloudWalk, and Face++ (also known as Megvii)—are used to monitor the country’s 1.3 billion citizens. Police there are even equipped with AI-powered eyeglasses for such purposes.

A fourth billion-dollar Chinese startup, Yitu Technologies, also produces a platform for facial recognition in the security realm, and develops AI systems in healthcare on top of that. For example, its CARE.AITM Intelligent 4D Imaging System for Chest CT can reputedly identify in real time a variety of lesions for the possible early detection of cancer.

The AI Doctor Is In
As Peter Diamandis recently noted, AI is rapidly augmenting healthcare and longevity. He mentioned another AI unicorn from China in this regard—iCarbonX, which plans to use machines to develop personalized health plans for every individual.

A couple of AI unicorns on the hardware side of healthcare are OrCam Technologies and Butterfly. The former, an Israeli company, has developed a wearable device for the vision impaired called MyEye that attaches to one’s eyeglasses. The device can identify people and products, as well as read text, conveying the information through discrete audio.

Butterfly Network, out of Connecticut, has completely upended the healthcare market with a handheld ultrasound machine that works with a smartphone.

“Orcam and Butterfly are amazing examples of how machine learning can be integrated into solutions that provide a step-function improvement over state of the art in ultra-competitive markets,” noted Andrew Byrnes, investment director at Comet Labs, a venture capital firm focused on AI and robotics, in an email exchange with Singularity Hub.

AI in the Driver’s Seat
Comet Labs’ portfolio includes two AI unicorns, Megvii and Pony.ai.

The latter is one of three billion-dollar startups developing the AI technology behind self-driving cars, with the other two being Momenta.ai and Zoox.

Founded in 2016 near San Francisco (with another headquarters in China), Pony.ai debuted its latest self-driving system, called PonyAlpha, last year. The platform uses multiple sensors (LiDAR, cameras, and radar) to navigate its environment, but its “sensor fusion technology” makes things simple by choosing the most reliable sensor data for any given driving scenario.

Zoox is another San Francisco area startup founded a couple of years earlier. In late 2018, it got the green light from the state of California to be the first autonomous vehicle company to transport a passenger as part of a pilot program. Meanwhile, China-based Momenta.ai is testing level four autonomy for its self-driving system. Autonomous driving levels are ranked zero to five, with level five being equal to a human behind the wheel.

The hype around autonomous driving is currently in overdrive, and Byrnes thinks regulatory roadblocks will keep most self-driving cars in idle for the foreseeable future. The exception, he said, is China, which is adopting a “systems” approach to autonomy for passenger transport.

“If [autonomous mobility] solves bigger problems like traffic that can elicit government backing, then that has the potential to go big fast,” he said. “This is why we believe Pony.ai will be a winner in the space.”

AI in the Back Office
An AI-powered technology that perhaps only fans of the cult classic Office Space might appreciate has suddenly taken the business world by storm—robotic process automation (RPA).

RPA companies take the mundane back office work, such as filling out invoices or processing insurance claims, and turn it over to bots. The intelligent part comes into play because these bots can tackle unstructured data, such as text in an email or even video and pictures, in order to accomplish an increasing variety of tasks.

Both Automation Anywhere and UiPath are older companies, founded in 2003 and 2005, respectively. However, since just 2017, they have raised nearly a combined $1 billion in disclosed capital.

Cybersecurity Embraces AI
Cybersecurity is another industry where AI is driving investment into startups. Sporting imposing names like CrowdStrike, Darktrace, and Tanium, these cybersecurity companies employ different machine-learning techniques to protect computers and other IT assets beyond the latest software update or virus scan.

Darktrace, for instance, takes its inspiration from the human immune system. Its algorithms can purportedly “learn” the unique pattern of each device and user on a network, detecting emerging problems before things spin out of control.

All three companies are used by major corporations and governments around the world. CrowdStrike itself made headlines a few years ago when it linked the hacking of the Democratic National Committee email servers to the Russian government.

Looking Forward
I could go on, and introduce you to the world’s most valuable startup, a Chinese company called Bytedance that is valued at $75 billion for news curation and an app to create 15-second viral videos. But that’s probably not where VC firms like Comet Labs are generally putting their money.

Byrnes sees real value in startups that are taking “data-driven approaches to problems specific to unique industries.” Take the example of Chicago-based unicorn Uptake Technologies, which analyzes incoming data from machines, from wind turbines to tractors, to predict problems before they occur with the machinery. A not-yet unicorn called PingThings in the Comet Labs portfolio does similar predictive analytics for the energy utilities sector.

“One question we like asking is, ‘What does the state of the art look like in your industry in three to five years?’” Byrnes said. “We ask that a lot, then we go out and find the technology-focused teams building those things.”

Image Credit: Andrey Suslov / Shutterstock.com Continue reading

Posted in Human Robots

#434658 The Next Data-Driven Healthtech ...

Increasing your healthspan (i.e. making 100 years old the new 60) will depend to a large degree on artificial intelligence. And, as we saw in last week’s blog, healthcare AI systems are extremely data-hungry.

Fortunately, a slew of new sensors and data acquisition methods—including over 122 million wearables shipped in 2018—are bursting onto the scene to meet the massive demand for medical data.

From ubiquitous biosensors, to the mobile healthcare revolution, to the transformative power of the Health Nucleus, converging exponential technologies are fundamentally transforming our approach to healthcare.

In Part 4 of this blog series on Longevity & Vitality, I expand on how we’re acquiring the data to fuel today’s AI healthcare revolution.

In this blog, I’ll explore:

How the Health Nucleus is transforming “sick care” to healthcare
Sensors, wearables, and nanobots
The advent of mobile health

Let’s dive in.

Health Nucleus: Transforming ‘Sick Care’ to Healthcare
Much of today’s healthcare system is actually sick care. Most of us assume that we’re perfectly healthy, with nothing going on inside our bodies, until the day we travel to the hospital writhing in pain only to discover a serious or life-threatening condition.

Chances are that your ailment didn’t materialize that morning; rather, it’s been growing or developing for some time. You simply weren’t aware of it. At that point, once you’re diagnosed as “sick,” our medical system engages to take care of you.

What if, instead of this retrospective and reactive approach, you were constantly monitored, so that you could know the moment anything was out of whack?

Better yet, what if you more closely monitored those aspects of your body that your gene sequence predicted might cause you difficulty? Think: your heart, your kidneys, your breasts. Such a system becomes personalized, predictive, and possibly preventative.

This is the mission of the Health Nucleus platform built by Human Longevity, Inc. (HLI). While not continuous—that will come later, with the next generation of wearable and implantable sensors—the Health Nucleus was designed to ‘digitize’ you once per year to help you determine whether anything is going on inside your body that requires immediate attention.

The Health Nucleus visit provides you with the following tests during a half-day visit:

Whole genome sequencing (30x coverage)
Whole body (non-contrast) MRI
Brain magnetic resonance imaging/angiography (MRI/MRA)
CT (computed tomography) of the heart and lungs
Coronary artery calcium scoring
Electrocardiogram
Echocardiogram
Continuous cardiac monitoring
Clinical laboratory tests and metabolomics

In late 2018, HLI published the results of the first 1,190 clients through the Health Nucleus. The results were eye-opening—especially since these patients were all financially well-off, and already had access to the best doctors.

Following are the physiological and genomic findings in these clients who self-selected to undergo evaluation at HLI’s Health Nucleus.

Physiological Findings [TG]

Two percent had previously unknown tumors detected by MRI
2.5 percent had previously undetected aneurysms detected by MRI
Eight percent had cardiac arrhythmia found on cardiac rhythm monitoring, not previously known
Nine percent had moderate-severe coronary artery disease risk, not previously known
16 percent discovered previously unknown cardiac structure/function abnormalities
30 percent had elevated liver fat, not previously known

Genomic Findings [TG]

24 percent of clients uncovered a rare (unknown) genetic mutation found on WGS
63 percent of clients had a rare genetic mutation with a corresponding phenotypic finding

In summary, HLI’s published results found that 14.4 percent of clients had significant findings that are actionable, requiring immediate or near-term follow-up and intervention.

Long-term value findings were found in 40 percent of the clients we screened. Long-term clinical findings include discoveries that require medical attention or monitoring but are not immediately life-threatening.

The bottom line: most people truly don’t know their actual state of health. The ability to take a fully digital deep dive into your health status at least once per year will enable you to detect disease at stage zero or stage one, when it is most curable.

Sensors, Wearables, and Nanobots
Wearables, connected devices, and quantified self apps will allow us to continuously collect enormous amounts of useful health information.

Wearables like the Quanttus wristband and Vital Connect can transmit your electrocardiogram data, vital signs, posture, and stress levels anywhere on the planet.

In April 2017, we were proud to grant $2.5 million in prize money to the winning team in the Qualcomm Tricorder XPRIZE, Final Frontier Medical Devices.

Using a group of noninvasive sensors that collect data on vital signs, body chemistry, and biological functions, Final Frontier integrates this data in their powerful, AI-based DxtER diagnostic engine for rapid, high-precision assessments.

Their engine combines learnings from clinical emergency medicine and data analysis from actual patients.

Google is developing a full range of internal and external sensors (e.g. smart contact lenses) that can monitor the wearer’s vitals, ranging from blood sugar levels to blood chemistry.

In September 2018, Apple announced its Series 4 Apple Watch, including an FDA-approved mobile, on-the-fly ECG. Granted its first FDA approval, Apple appears to be moving deeper into the sensing healthcare market.

Further, Apple is reportedly now developing sensors that can non-invasively monitor blood sugar levels in real time for diabetic treatment. IoT-connected sensors are also entering the world of prescription drugs.

Last year, the FDA approved the first sensor-embedded pill, Abilify MyCite. This new class of digital pills can now communicate medication data to a user-controlled app, to which doctors may be granted access for remote monitoring.

Perhaps what is most impressive about the next generation of wearables and implantables is the density of sensors, processing, networking, and battery capability that we can now cheaply and compactly integrate.

Take the second-generation OURA ring, for example, which focuses on sleep measurement and management.

The OURA ring looks like a slightly thick wedding band, yet contains an impressive array of sensors and capabilities, including:

Two infrared LED
One infrared sensor
Three temperature sensors
One accelerometer
A six-axis gyro
A curved battery with a seven-day life
The memory, processing, and transmission capability required to connect with your smartphone

Disrupting Medical Imaging Hardware
In 2018, we saw lab breakthroughs that will drive the cost of an ultrasound sensor to below $100, in a packaging smaller than most bandages, powered by a smartphone. Dramatically disrupting ultrasound is just the beginning.

Nanobots and Nanonetworks
While wearables have long been able to track and transmit our steps, heart rate, and other health data, smart nanobots and ingestible sensors will soon be able to monitor countless new parameters and even help diagnose disease.

Some of the most exciting breakthroughs in smart nanotechnology from the past year include:

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) demonstrated artificial microrobots that can swim and navigate through different fluids, independent of additional sensors, electronics, or power transmission.

Researchers at the University of Chicago proposed specific arrangements of DNA-based molecular logic gates to capture the information contained in the temporal portion of our cells’ communication mechanisms. Accessing the otherwise-lost time-dependent information of these cellular signals is akin to knowing the tune of a song, rather than solely the lyrics.

MIT researchers built micron-scale robots able to sense, record, and store information about their environment. These tiny robots, about 100 micrometers in diameter (approximately the size of a human egg cell), can also carry out pre-programmed computational tasks.

Engineers at University of California, San Diego developed ultrasound-powered nanorobots that swim efficiently through your blood, removing harmful bacteria and the toxins they produce.

But it doesn’t stop there.

As nanosensor and nanonetworking capabilities develop, these tiny bots may soon communicate with each other, enabling the targeted delivery of drugs and autonomous corrective action.

Mobile Health
The OURA ring and the Series 4 Apple Watch are just the tip of the spear when it comes to our future of mobile health. This field, predicted to become a $102 billion market by 2022, puts an on-demand virtual doctor in your back pocket.

Step aside, WebMD.

In true exponential technology fashion, mobile device penetration has increased dramatically, while image recognition error rates and sensor costs have sharply declined.

As a result, AI-powered medical chatbots are flooding the market; diagnostic apps can identify anything from a rash to diabetic retinopathy; and with the advent of global connectivity, mHealth platforms enable real-time health data collection, transmission, and remote diagnosis by medical professionals.

Already available to residents across North London, Babylon Health offers immediate medical advice through AI-powered chatbots and video consultations with doctors via its app.

Babylon now aims to build up its AI for advanced diagnostics and even prescription. Others, like Woebot, take on mental health, using cognitive behavioral therapy in communications over Facebook messenger with patients suffering from depression.

In addition to phone apps and add-ons that test for fertility or autism, the now-FDA-approved Clarius L7 Linear Array Ultrasound Scanner can connect directly to iOS and Android devices and perform wireless ultrasounds at a moment’s notice.

Next, Healthy.io, an Israeli startup, uses your smartphone and computer vision to analyze traditional urine test strips—all you need to do is take a few photos.

With mHealth platforms like ClickMedix, which connects remotely-located patients to medical providers through real-time health data collection and transmission, what’s to stop us from delivering needed treatments through drone delivery or robotic telesurgery?

Welcome to the age of smartphone-as-a-medical-device.

Conclusion
With these DIY data collection and diagnostic tools, we save on transportation costs (time and money), and time bottlenecks.

No longer will you need to wait for your urine or blood results to go through the current information chain: samples will be sent to the lab, analyzed by a technician, results interpreted by your doctor, and only then relayed to you.

Just like the “sage-on-the-stage” issue with today’s education system, healthcare has a “doctor-on-the-dais” problem. Current medical procedures are too complicated and expensive for a layperson to perform and analyze on their own.

The coming abundance of healthcare data promises to transform how we approach healthcare, putting the power of exponential technologies in the patient’s hands and revolutionizing how we live.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Titima Ongkantong / Shutterstock.com Continue reading

Posted in Human Robots

#434643 Sensors and Machine Learning Are Giving ...

According to some scientists, humans really do have a sixth sense. There’s nothing supernatural about it: the sense of proprioception tells you about the relative positions of your limbs and the rest of your body. Close your eyes, block out all sound, and you can still use this internal “map” of your external body to locate your muscles and body parts – you have an innate sense of the distances between them, and the perception of how they’re moving, above and beyond your sense of touch.

This sense is invaluable for allowing us to coordinate our movements. In humans, the brain integrates senses including touch, heat, and the tension in muscle spindles to allow us to build up this map.

Replicating this complex sense has posed a great challenge for roboticists. We can imagine simulating the sense of sight with cameras, sound with microphones, or touch with pressure-pads. Robots with chemical sensors could be far more accurate than us in smell and taste, but building in proprioception, the robot’s sense of itself and its body, is far more difficult, and is a large part of why humanoid robots are so tricky to get right.

Simultaneous localization and mapping (SLAM) software allows robots to use their own senses to build up a picture of their surroundings and environment, but they’d need a keen sense of the position of their own bodies to interact with it. If something unexpected happens, or in dark environments where primary senses are not available, robots can struggle to keep track of their own position and orientation. For human-robot interaction, wearable robotics, and delicate applications like surgery, tiny differences can be extremely important.

Piecemeal Solutions
In the case of hard robotics, this is generally solved by using a series of strain and pressure sensors in each joint, which allow the robot to determine how its limbs are positioned. That works fine for rigid robots with a limited number of joints, but for softer, more flexible robots, this information is limited. Roboticists are faced with a dilemma: a vast, complex array of sensors for every degree of freedom in the robot’s movement, or limited skill in proprioception?

New techniques, often involving new arrays of sensory material and machine-learning algorithms to fill in the gaps, are starting to tackle this problem. Take the work of Thomas George Thuruthel and colleagues in Pisa and San Diego, who draw inspiration from the proprioception of humans. In a new paper in Science Robotics, they describe the use of soft sensors distributed through a robotic finger at random. This placement is much like the constant adaptation of sensors in humans and animals, rather than relying on feedback from a limited number of positions.

The sensors allow the soft robot to react to touch and pressure in many different locations, forming a map of itself as it contorts into complicated positions. The machine-learning algorithm serves to interpret the signals from the randomly-distributed sensors: as the finger moves around, it’s observed by a motion capture system. After training the robot’s neural network, it can associate the feedback from the sensors with the position of the finger detected in the motion-capture system, which can then be discarded. The robot observes its own motions to understand the shapes that its soft body can take, and translate them into the language of these soft sensors.

“The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors,” said Michael Tolley of the University of California San Diego. “Our method also includes redundant sensors, which improves the overall robustness of our predictions.”

The use of machine learning lets the roboticists come up with a reliable model for this complex, non-linear system of motions for the actuators, something difficult to do by directly calculating the expected motion of the soft-bot. It also resembles the human system of proprioception, built on redundant sensors that change and shift in position as we age.

In Search of a Perfect Arm
Another approach to training robots in using their bodies comes from Robert Kwiatkowski and Hod Lipson of Columbia University in New York. In their paper “Task-agnostic self-modeling machines,” also recently published in Science Robotics, they describe a new type of robotic arm.

Robotic arms and hands are getting increasingly dexterous, but training them to grasp a large array of objects and perform many different tasks can be an arduous process. It’s also an extremely valuable skill to get right: Amazon is highly interested in the perfect robot arm. Google hooked together an array of over a dozen robot arms so that they could share information about grasping new objects, in part to cut down on training time.

Individually training a robot arm to perform every individual task takes time and reduces the adaptability of your robot: either you need an ML algorithm with a huge dataset of experiences, or, even worse, you need to hard-code thousands of different motions. Kwiatkowski and Lipson attempt to overcome this by developing a robotic system that has a “strong sense of self”: a model of its own size, shape, and motions.

They do this using deep machine learning. The robot begins with no prior knowledge of its own shape or the underlying physics of its motion. It then repeats a series of a thousand random trajectories, recording the motion of its arm. Kwiatkowski and Lipson compare this to a baby in the first year of life observing the motions of its own hands and limbs, fascinated by picking up and manipulating objects.

Again, once the robot has trained itself to interpret these signals and build up a robust model of its own body, it’s ready for the next stage. Using that deep-learning algorithm, the researchers then ask the robot to design strategies to accomplish simple pick-up and place and handwriting tasks. Rather than laboriously and narrowly training itself for each individual task, limiting its abilities to a very narrow set of circumstances, the robot can now strategize how to use its arm for a much wider range of situations, with no additional task-specific training.

Damage Control
In a further experiment, the researchers replaced part of the arm with a “deformed” component, intended to simulate what might happen if the robot was damaged. The robot can then detect that something’s up and “reconfigure” itself, reconstructing its self-model by going through the training exercises once again; it was then able to perform the same tasks with only a small reduction in accuracy.

Machine learning techniques are opening up the field of robotics in ways we’ve never seen before. Combining them with our understanding of how humans and other animals are able to sense and interact with the world around us is bringing robotics closer and closer to becoming truly flexible and adaptable, and, eventually, omnipresent.

But before they can get out and shape the world, as these studies show, they will need to understand themselves.

Image Credit: jumbojan / Shutterstock.com Continue reading

Posted in Human Robots