Tag Archives: Defense

#431689 Robotic Materials Will Distribute ...

The classical view of a robot as a mechanical body with a central “brain” that controls its behavior could soon be on its way out. The authors of a recent article in Science Robotics argue that future robots will have intelligence distributed throughout their bodies.
The concept, and the emerging discipline behind it, are variously referred to as “material robotics” or “robotic materials” and are essentially a synthesis of ideas from robotics and materials science. Proponents say advances in both fields are making it possible to create composite materials capable of combining sensing, actuation, computation, and communication and operating independently of a central processing unit.
Much of the inspiration for the field comes from nature, with practitioners pointing to the adaptive camouflage of the cuttlefish’s skin, the ability of bird wings to morph in response to different maneuvers, or the banyan tree’s ability to grow roots above ground to support new branches.
Adaptive camouflage and morphing wings have clear applications in the defense and aerospace sector, but the authors say similar principles could be used to create everything from smart tires able to calculate the traction needed for specific surfaces to grippers that can tailor their force to the kind of object they are grasping.
“Material robotics represents an acknowledgment that materials can absorb some of the challenges of acting and reacting to an uncertain world,” the authors write. “Embedding distributed sensors and actuators directly into the material of the robot’s body engages computational capabilities and offloads the rigid information and computational requirements from the central processing system.”
The idea of making materials more adaptive is not new, and there are already a host of “smart materials” that can respond to stimuli like heat, mechanical stress, or magnetic fields by doing things like producing a voltage or changing shape. These properties can be carefully tuned to create materials capable of a wide variety of functions such as movement, self-repair, or sensing.
The authors say synthesizing these kinds of smart materials, alongside other advanced materials like biocompatible conductors or biodegradable elastomers, is foundational to material robotics. But the approach also involves integration of many different capabilities in the same material, careful mechanical design to make the most of mechanical capabilities, and closing the loop between sensing and control within the materials themselves.
While there are stand-alone applications for such materials in the near term, like smart fabrics or robotic grippers, the long-term promise of the field is to distribute decision-making in future advanced robots. As they are imbued with ever more senses and capabilities, these machines will be required to shuttle huge amounts of control and feedback data to and fro, placing a strain on both their communication and computation abilities.
Materials that can process sensor data at the source and either autonomously react to it or filter the most relevant information to be passed on to the central processing unit could significantly ease this bottleneck. In a press release related to an earlier study, Nikolaus Correll, an assistant professor of computer science at the University of Colorado Boulder who is also an author of the current paper, pointed out this is a tactic used by the human body.
“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” he said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”
There are still considerable challenges to realizing this vision, though, the authors say, noting that so far the young field has only produced proof of concepts. The biggest challenge remains manufacturing robotic materials in a way that combines all these capabilities in a small enough package at an affordable cost.
Luckily, the authors note, the field can draw on convergent advances in both materials science, such as the development of new bulk materials with inherent multifunctionality, and robotics, such as the ever tighter integration of components.
And they predict that doing away with the prevailing dichotomy of “brain versus body” could lay the foundations for the emergence of “robots with brains in their bodies—the foundation of inexpensive and ubiquitous robots that will step into the real world.”
Image Credit: Anatomy Insider / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431392 What AI Can Now Do Is Remarkable—But ...

Major websites all over the world use a system called CAPTCHA to verify that someone is indeed a human and not a bot when entering data or signing into an account. CAPTCHA stands for the “Completely Automated Public Turing test to tell Computers and Humans Apart.” The squiggly letters and numbers, often posted against photographs or textured backgrounds, have been a good way to foil hackers. They are annoying but effective.
The days of CAPTCHA as a viable line of defense may, however, be numbered.
Researchers at Vicarious, a Californian artificial intelligence firm funded by Amazon founder Jeff Bezos and Facebook’s Mark Zuckerberg, have just published a paper documenting how they were able to defeat CAPTCHA using new artificial intelligence techniques. Whereas today’s most advanced artificial intelligence (AI) technologies use neural networks that require massive amounts of data to learn from, sometimes millions of examples, the researchers said their system needed just five training steps to crack Google’s reCAPTCHA technology. With this, they achieved a 67 percent success rate per character—reasonably close to the human accuracy rate of 87 percent. In answering PayPal and Yahoo CAPTCHAs, the system achieved an accuracy rate of greater than 50 percent.
The CAPTCHA breakthrough came hard on the heels of another major milestone from Google’s DeepMind team, the people who built the world’s best Go-playing system. DeepMind built a new artificial-intelligence system called AlphaGo Zero that taught itself to play the game at a world-beating level with minimal training data, mainly using trial and error—in a fashion similar to how humans learn.
Both playing Go and deciphering CAPTCHAs are clear examples of what we call narrow AI, which is different from artificial general intelligence (AGI)—the stuff of science fiction. Remember R2-D2 of Star Wars, Ava from Ex Machina, and Samantha from Her? They could do many things and learned everything they needed on their own.
Narrow AI technologies are systems that can only perform one specific type of task. For example, if you asked AlphaGo Zero to learn to play Monopoly, it could not, even though that is a far less sophisticated game than Go. If you asked the CAPTCHA cracker to learn to understand a spoken phrase, it would not even know where to start.
To date, though, even narrow AI has been difficult to build and perfect. To perform very elementary tasks such as determining whether an image is of a cat or a dog, the system requires the development of a model that details exactly what is being analyzed and massive amounts of data with labeled examples of both. The examples are used to train the AI systems, which are modeled on the neural networks in the brain, in which the connections between layers of neurons are adjusted based on what is observed. To put it simply, you tell an AI system exactly what to learn, and the more data you give it, the more accurate it becomes.
The methods that Vicarious and Google used were different; they allowed the systems to learn on their own, albeit in a narrow field. By making their own assumptions about what the training model should be and trying different permutations until they got the right results, they were able to teach themselves how to read the letters in a CAPTCHA or to play a game.
This blurs the line between narrow AI and AGI and has broader implications in robotics and virtually any other field in which machine learning in complex environments may be relevant.
Beyond visual recognition, the Vicarious breakthrough and AlphaGo Zero success are encouraging scientists to think about how AIs can learn to do things from scratch. And this brings us one step closer to coexisting with classes of AIs and robots that can learn to perform new tasks that are slight variants on their previous tasks—and ultimately the AGI of science fiction.
So R2-D2 may be here sooner than we expected.
This article was originally published by The Washington Post. Read the original article here.
Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430874 12 Companies That Are Making the World a ...

The Singularity University Global Summit in San Francisco this week brought brilliant minds together from all over the world to share a passion for using science and technology to solve the world’s most pressing challenges.
Solving these challenges means ensuring basic needs are met for all people. It means improving quality of life and mitigating future risks both to people and the planet.
To recognize organizations doing outstanding work in these fields, SU holds the Global Grand Challenge Awards. Three participating organizations are selected in each of 12 different tracks and featured at the summit’s EXPO. The ones found to have the most potential to positively impact one billion people are selected as the track winners.
Here’s a list of the companies recognized this year, along with some details about the great work they’re doing.
Global Grand Challenge Awards winners at Singularity University’s Global Summit in San Francisco.
Disaster Resilience
LuminAID makes portable lanterns that can provide 24 hours of light on 10 hours of solar charging. The lanterns came from a project to assist post-earthquake relief efforts in Haiti, when the product’s creators considered the dangerous conditions at night in the tent cities and realized light was a critical need. The lights have been used in more than 100 countries and after disasters, including Hurricane Sandy, Typhoon Haiyan, and the earthquakes in Nepal.

Environment
BreezoMeter uses big data and machine learning to deliver accurate air quality information in real time. Users can see pollution details as localized as a single city block, and data is impacted by real-time traffic. Forecasting is also available, with air pollution information available up to four days ahead of time, or several years in the past.
Food
Aspire Food Group believes insects are the protein of the future, and that technology has the power to bring the tradition of eating insects that exists in many countries and cultures to the rest of the world. The company uses technologies like robotics and automated data collection to farm insects that have the protein quality of meat and the environmental footprint of plants.
Energy
Rafiki Power acts as a rural utility company, building decentralized energy solutions in regions that lack basic services like running water and electricity. The company’s renewable hybrid systems are packed and standardized in recycled 20-foot shipping containers, and they’re currently powering over 700 household and business clients in rural Tanzania.

Governance
MakeSense is an international community that brings together people in 128 cities across the world to help social entrepreneurs solve challenges in areas like education, health, food, and environment. Social entrepreneurs post their projects and submit challenges to the community, then participants organize workshops to mobilize and generate innovative solutions to help the projects grow.
Health
Unima developed a fast and low-cost diagnostic and disease surveillance tool for infectious diseases. The tool allows health professionals to diagnose diseases at the point of care, in less than 15 minutes, without the use of any lab equipment. A drop of the patient’s blood is put on a diagnostic paper, where the antibody generates a visual reaction when in contact with the biomarkers in the sample. The result is evaluated by taking a photo with an app in a smartphone, which uses image processing, artificial intelligence and machine learning.
Prosperity
Egalite helps people with disabilities enter the labor market, and helps companies develop best practices for inclusion of the disabled. Egalite’s founders are passionate about the potential of people with disabilities and the return companies get when they invest in that potential.
Learning
Iris.AI is an artificial intelligence system that reads scientific paper abstracts and extracts key concepts for users, presenting concepts visually and allowing users to navigate a topic across disciplines. Since its launch, Iris.AI has read 30 million research paper abstracts and more than 2,000 TED talks. The AI uses a neural net and deep learning technology to continuously improve its output.
Security
Hala Systems, Inc. is a social enterprise focused on developing technology-driven solutions to the world’s toughest humanitarian challenges. Hala is currently focused on civilian protection, accountability, and the prevention of violent extremism before, during, and after conflict. Ultimately, Hala aims to transform the nature of civilian defense during warfare, as well as to reduce casualties and trauma during post-conflict recovery, natural disasters, and other major crises.
Shelter
Billion Bricks designs and provides shelter and infrastructure solutions for the homeless. The company’s housing solutions are scalable, sustainable, and able to create opportunities for communities to emerge from poverty. Their approach empowers communities to replicate the solutions on their own, reducing dependency on support and creating ownership and pride.

Space
Tellus Labs uses satellite data to tackle challenges like food security, water scarcity, and sustainable urban and industrial systems, and drive meaningful change. The company built a planetary-scale model of all 170 million acres of US corn and soy crops to more accurately forecast yields and help stabilize the market fluctuations that accompany the USDA’s monthly forecasts.
Water
Loowatt designed a toilet that uses a patented sealing technology to contain human waste within biodegradable film. The toilet is designed for linking to anaerobic digestion technology to provide a source of biogas for cooking, electricity, and other applications, creating the opportunity to offset capital costs with energy production.
Image Credit: LuminAID via YouTube Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430640 RE2 Robotics Receives Air Force Funding ...

PITTSBURGH, PA – June 21, 2017 – RE2 Robotics announced today that the Company was selected by the Air Force to develop a drop-in robotic system to rapidly convert a variety of traditionally manned aircraft to robotically piloted, autonomous aircraft under the Small Business Innovation Research (SBIR) program. This robotic system, named “Common Aircraft Retrofit for Novel Autonomous Control” (CARNAC), will operate the aircraft similarly to a human pilot and will not require any modifications to the aircraft.
Automation and autonomy have broad value to the Department of Defense with the potential to enhance system performance of existing platforms, reduce costs, and enable new missions and capabilities, especially with reduced human exposure to dangerous or life-threatening situations. The CARNAC project leverages existing aviation assets and advances in vehicle automation technologies to develop a cutting-edge drop-in robotic flight system.
During the program, RE2 Robotics will demonstrate system architecture feasibility, humanoid-like robotic manipulation capabilities, vision-based flight-status recognition, and cognitive architecture-based decision making.
“Our team is excited to incorporate the Company’s robotic manipulation expertise with proven technologies in applique systems, vision processing algorithms, and decision making to create a customized application that will allow a wide variety of existing aircraft to be outfitted with a robotic pilot,” stated Jorgen Pedersen, president and CEO of RE2 Robotics. “By creating a drop-in robotic pilot, we have the ability to insert autonomy into and expand the capabilities of not only traditionally manned air vehicles, but ground and underwater vehicles as well. This application will open up a whole new market for our mobile robotic manipulator systems.”
###
About RE2 RoboticsRE2 Robotics develops mobile robotic technologies that enable robot users to remotely interact with their world from a safe distance — whether on the ground, in the air, or underwater. RE2 creates interoperable robotic manipulator arms with human-like performance, intuitive human robot interfaces, and advanced autonomy software for mobile robotics. For more information, please visit www.resquared.com or call 412.681.6382.
Media Contact: RE2 Public Relations, pr@resquared.com, 412.681.6382.
The post RE2 Robotics Receives Air Force Funding to Develop Robotic Pilot appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#428133 H-Ros – Hardware Robot Operating ...

As ROS – Robot Operating System is being used by more and more robots, a new form of building robots that uses ROS is coming into play, which is called H-Ros, Hardware Robot Operating System. This is currently supported by several companies that adopt its standard interfaces. Each piece runs ROS 2.0 on its own has its own ROS nodes and topics. Building robots is about putting together different H-ROS components that can come from different manufacturers but still interoperate thanks to the standard hardware interfaces defined within H-ROS. The blocks that make up the system fall into 5 categories, which are, sensing, actuation, communication, cognition and hybrid components. Below is the press release provied to us by Erle Robotics, which is one of the several firms that are currently working on this.
////////////////////////////////////////////////////////////////////////////////////
Erle Robotics announced a new platform that provides manufacturers tools for building interoperable robot components that can easily be exchanged between robots
Photo Credit: https://www.h-ros.com/, www.erlerobotics.com

Erle Robotics announced during ROSCon 2016 in Seoul, Korea, a new game-changing standard for building robot components, H-ROS: the Hardware Robot Operating System. H-ROS provides manufacturers tools for building interoperable robot components that can easily be exchanged or replaced between robots.

Powered by the popular Robot Operating System (ROS), H-ROS offers building-block-style parts that come as reusable and reconfigurable components allowing developers, to easily upgrade their robots with hardware from different manufacturers and add new features in seconds.

With H-ROS, building robots will be about placing H-ROS-compatible hardware components together to build new robot configurations. Constructing robots won’t be restricted to a few with high technical skills but it will be extended to a great majority with a general understanding of the sensing and actuation needed in a particular scenario.

H-ROS was initially funded by the US Defense Advanced Research Projects Agency (DARPA) through the Robotics Fast Track program in 2016 and developed by Erle Robotics. The platform has already been tested by several international manufacturers who have built robots out of this technology. This is the case of H-ROS Turtlebot, which was presented during the conference in Seoul.

H-ROS is now available for selected industry partners and will soon be released for the wider robotics community. Additional information can be requested through its official web page at https://h-ros.com/.
Photo Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.com
The post H-Ros – Hardware Robot Operating System appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment