Tag Archives: create

#431559 Drug Discovery AI to Scour a Universe of ...

On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]

In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431543 China Is an Entrepreneurial Hotbed That ...

Last week, Eric Schmidt, chairman of Alphabet, predicted that China will rapidly overtake the US in artificial intelligence…in as little as five years.
Last month, China announced plans to open a $10 billion quantum computing research center in 2020.
Bottom line, China is aggressively investing in exponential technologies, pursuing a bold goal of becoming the global AI superpower by 2030.
Based on what I’ve observed from China’s entrepreneurial scene, I believe they have a real shot of hitting that goal.
As I described in a previous tech blog, I recently traveled to China with a group of my Abundance 360 members, where I was hosted by my friend Kai-Fu Lee, the founder, chairman, and CEO of Sinovation Ventures.
On one of our first nights, Kai-Fu invited us to a special dinner at Da Dong Roast, which specializes in Peking duck, where we shared an 18-course meal.
The meal was amazing, and Kai-Fu’s dinner conversation provided us priceless insights on Chinese entrepreneurs.
Three topics opened my eyes. Here’s the wisdom I’d like to share with you.
1. The Entrepreneurial Culture in China
Chinese entrepreneurship has exploded onto the scene and changed significantly over the past 10 years.
In my opinion, one significant way that Chinese entrepreneurs vary from their American counterparts is in work ethic. The mantra I found in the startups I visited in Beijing and Shanghai was “9-9-6”—meaning the employees only needed to work from 9 am to 9 pm, 6 days a week.
Another concept Kai-Fu shared over dinner was the almost ‘dictatorial’ leadership of the founder/CEO. In China, it’s not uncommon for the Founder/CEO to own the majority of the company, or at least 30–40 percent. It’s also the case that what the CEO says is gospel. Period, no debate. There is no minority or dissenting opinion. When the CEO says “march,” the company asks, “which way?”
When Kai-Fu started Sinovation (his $1 billion+ venture fund), there were few active angel investors. Today, China has a rich ecosystem of angel, venture capital, and government-funded innovation parks.
As venture capital in China has evolved, so too has the mindset of the entrepreneur.
Kai -Fu recalled an early investment he made in which, after an unfortunate streak, the entrepreneur came to him, almost in tears, apologizing for losing his money and promising he would earn it back for him in another way. Kai-Fu comforted the entrepreneur and said there was no such need.
Only a few years later, the situation was vastly different. An entrepreneur who was going through a similar unfortunate streak came to Kai Fu and told him he only had $2 million left of his initial $12 million investment. He informed him he saw no value in returning the money and instead was going to take the last $2 million and use it as a final push to see if the company could succeed. He then promised Kai-Fu if he failed, he would remember what Kai-Fu did for him and, as such, possibly give Sinovation an opportunity to invest in him with his next company.
2. Chinese Companies Are No Longer Just ‘Copycats’
During dinner, Kai-Fu lamented that 10 years ago, it would be fair to call Chinese companies copycats of American companies. Five years ago, the claim would be controversial. Today, however, Kai-Fu is clear that claim is entirely false.
While smart Chinese startups will still look at what American companies are doing and build on trends, today it’s becoming a wise business practice for American tech giants to analyze Chinese companies. If you look at many new features of Facebook’s Messenger, it seems to very closely mirror TenCent’s WeChat.
Interestingly, tight government controls in China have actually spurred innovation. Take TV, for example, a highly regulated industry. Because of this regulation, most entertainment in China is consumed on the internet or by phone. Game shows, reality shows, and more will be entirely centered online.
Kai-Fu told us about one of his investments in a company that helps create Chinese singing sensations. They take girls in from a young age, school them, and regardless of talent, help build their presence and brand as singers. Once ready, these singers are pushed across all the available platforms, and superstars are born. The company recognizes its role in this superstar status, though, which is why it takes a 50 percent cut of all earnings.
This company is just one example of how Chinese entrepreneurs take advantage of China’s unique position, market, and culture.
3. China’s Artificial Intelligence Play
Kai-Fu wrapped up his talk with a brief introduction into the expansive AI industry in China. I previously discussed Face++, a Sinovation investment, which is creating radically efficient facial recognition technology. Face++ is light years ahead of anyone else globally at recognition in live videos. However, Face++ is just one of the incredible advances in AI coming out of China.
Baidu, one of China’s most valuable tech companies, started out as just a search company. However, they now run one of the country’s leading self-driving car programs.
Baidu’s goal is to create a software suite atop existing hardware that will control all self-driving aspects of a vehicle but also be able to provide additional services such as HD mapping and more.
Another interesting application came from another of Sinovation’s investments, Smart Finance Group (SFG). Given most payments are mobile (through WeChat or Alipay), only ~20 percent of the population in China have a credit history. This makes it very difficult for individuals in China to acquire a loan.
SFG’s mobile application takes in user data (as much as the user allows) and, based on the information provided, uses an AI agent to create a financial profile with the power to offer an instant loan. This loan can be deposited directly into their WeChat or Alipay account and is typically approved in minutes. Unlike American loan companies, they avoid default and long-term debt by only providing a one-month loan with 10% interest. Borrow $200, and you pay back $220 by the following month.
Artificial intelligence is exploding in China, and Kai-Fu believes it will touch every single industry.
The only constant is change, and the rate of change is constantly increasing.
In the next 10 years, we’ll see tremendous changes on the geopolitical front and the global entrepreneurial scene caused by technological empowerment.
China is an entrepreneurial hotbed that cannot be ignored. I’m monitoring it closely. Are you?
Image Credit: anekoho / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431377 The Farms of the Future Will Be ...

Swarms of drones buzz overhead, while robotic vehicles crawl across the landscape. Orbiting satellites snap high-resolution images of the scene far below. Not one human being can be seen in the pre-dawn glow spreading across the land.
This isn’t some post-apocalyptic vision of the future à la The Terminator. This is a snapshot of the farm of the future. Every phase of the operation—from seed to harvest—may someday be automated, without the need to ever get one’s fingernails dirty.
In fact, it’s science fiction already being engineered into reality. Today, robots empowered with artificial intelligence can zap weeds with preternatural precision, while autonomous tractors move with tireless efficiency across the farmland. Satellites can assess crop health from outer space, providing gobs of data to help produce the sort of business intelligence once accessible only to Fortune 500 companies.
“Precision agriculture is on the brink of a new phase of development involving smart machines that can operate by themselves, which will allow production agriculture to become significantly more efficient. Precision agriculture is becoming robotic agriculture,” said professor Simon Blackmore last year during a conference in Asia on the latest developments in robotic agriculture. Blackmore is head of engineering at Harper Adams University and head of the National Centre for Precision Farming in the UK.
It’s Blackmore’s university that recently showcased what may someday be possible. The project, dubbed Hands Free Hectare and led by researchers from Harper Adams and private industry, farmed one hectare (about 2.5 acres) of spring barley without one person ever setting foot in the field.
The team re-purposed, re-wired and roboticized farm equipment ranging from a Japanese tractor to a 25-year-old combine. Drones served as scouts to survey the operation and collect samples to help the team monitor the progress of the barley. At the end of the season, the robo farmers harvested about 4.5 tons of barley at a price tag of £200,000.

“This project aimed to prove that there’s no technological reason why a field can’t be farmed without humans working the land directly now, and we’ve done that,” said Martin Abell, mechatronics researcher for Precision Decisions, which partnered with Harper Adams, in a press release.
I, Robot Farmer
The Harper Adams experiment is the latest example of how machines are disrupting the agricultural industry. Around the same time that the Hands Free Hectare combine was harvesting barley, Deere & Company announced it would acquire a startup called Blue River Technology for a reported $305 million.
Blue River has developed a “see-and-spray” system that combines computer vision and artificial intelligence to discriminate between crops and weeds. It hits the former with fertilizer and blasts the latter with herbicides with such precision that it can eliminate 90 percent of the chemicals used in conventional agriculture.
It’s not just farmland that’s getting a helping hand from robots. A California company called Abundant Robotics, spun out of the nonprofit research institute SRI International, is developing robots capable of picking apples with vacuum-like arms that suck the fruit straight off the trees in the orchards.
“Traditional robots were designed to perform very specific tasks over and over again. But the robots that will be used in food and agricultural applications will have to be much more flexible than what we’ve seen in automotive manufacturing plants in order to deal with natural variation in food products or the outdoor environment,” Dan Harburg, an associate at venture capital firm Anterra Capital who previously worked at a Massachusetts-based startup making a robotic arm capable of grabbing fruit, told AgFunder News.
“This means ag-focused robotics startups have to design systems from the ground up, which can take time and money, and their robots have to be able to complete multiple tasks to avoid sitting on the shelf for a significant portion of the year,” he noted.
Eyes in the Sky
It will take more than an army of robotic tractors to grow a successful crop. The farm of the future will rely on drones, satellites, and other airborne instruments to provide data about their crops on the ground.
Companies like Descartes Labs, for instance, employ machine learning to analyze satellite imagery to forecast soy and corn yields. The Los Alamos, New Mexico startup collects five terabytes of data every day from multiple satellite constellations, including NASA and the European Space Agency. Combined with weather readings and other real-time inputs, Descartes Labs can predict cornfield yields with 99 percent accuracy. Its AI platform can even assess crop health from infrared readings.
The US agency DARPA recently granted Descartes Labs $1.5 million to monitor and analyze wheat yields in the Middle East and Africa. The idea is that accurate forecasts may help identify regions at risk of crop failure, which could lead to famine and political unrest. Another company called TellusLabs out of Somerville, Massachusetts also employs machine learning algorithms to predict corn and soy yields with similar accuracy from satellite imagery.
Farmers don’t have to reach orbit to get insights on their cropland. A startup in Oakland, Ceres Imaging, produces high-resolution imagery from multispectral cameras flown across fields aboard small planes. The snapshots capture the landscape at different wavelengths, identifying insights into problems like water stress, as well as providing estimates of chlorophyll and nitrogen levels. The geo-tagged images mean farmers can easily locate areas that need to be addressed.
Growing From the Inside
Even the best intelligence—whether from drones, satellites, or machine learning algorithms—will be challenged to predict the unpredictable issues posed by climate change. That’s one reason more and more companies are betting the farm on what’s called controlled environment agriculture. Today, that doesn’t just mean fancy greenhouses, but everything from warehouse-sized, automated vertical farms to grow rooms run by robots, located not in the emptiness of Kansas or Nebraska but smack dab in the middle of the main streets of America.
Proponents of these new concepts argue these high-tech indoor farms can produce much higher yields while drastically reducing water usage and synthetic inputs like fertilizer and herbicides.
Iron Ox, out of San Francisco, is developing one-acre urban greenhouses that will be operated by robots and reportedly capable of producing the equivalent of 30 acres of farmland. Powered by artificial intelligence, a team of three robots will run the entire operation of planting, nurturing, and harvesting the crops.
Vertical farming startup Plenty, also based in San Francisco, uses AI to automate its operations, and got a $200 million vote of confidence from the SoftBank Vision Fund earlier this year. The company claims its system uses only 1 percent of the water consumed in conventional agriculture while producing 350 times as much produce. Plenty is part of a new crop of urban-oriented farms, including Bowery Farming and AeroFarms.
“What I can envision is locating a larger scale indoor farm in the economically disadvantaged food desert, in order to stimulate a broader economic impact that could create jobs and generate income for that area,” said Dr. Gary Stutte, an expert in space agriculture and controlled environment agriculture, in an interview with AgFunder News. “The indoor agriculture model is adaptable to becoming an engine for economic growth and food security in both rural and urban food deserts.”
Still, the model is not without its own challenges and criticisms. Most of what these farms can produce falls into the “leafy greens” category and often comes with a premium price, which seems antithetical to the proposed mission of creating oases in the food deserts of cities. While water usage may be minimized, the electricity required to power the operation, especially the LEDs (which played a huge part in revolutionizing indoor agriculture), are not cheap.
Still, all of these advances, from robo farmers to automated greenhouses, may need to be part of a future where nearly 10 billion people will inhabit the planet by 2050. An oft-quoted statistic from the Food and Agriculture Organization of the United Nations says the world must boost food production by 70 percent to meet the needs of the population. Technology may not save the world, but it will help feed it.
Image Credit: Valentin Valkov / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431315 Better Than Smart Speakers? Japan Is ...

While American internet giants are developing speakers, Japanese companies are working on robots and holograms. They all share a common goal: to create the future platform for the Internet of Things (IoT) and smart homes.
Names like Bocco, EMIEW3, Xperia Assistant, and Gatebox may not ring a bell to most outside of Japan, but Sony, Hitachi, Sharp, and Softbank most certainly do. The companies, along with Japanese start-ups, have developed robots, robot concepts, and even holograms like the ones hiding behind the short list of names.
While there are distinct differences between the various systems, they share the potential to act as a remote control for IoT devices and smart homes. It is a very different direction than that taken by companies like Google, Amazon, and Apple, who have so far focused on building IoT speaker systems.
Bocco robot. Image Credit: Yukai Engineering
“Technology companies are pursuing the platform—or smartphone if you will—for IoT. My impression is that Japanese companies—and Japanese consumers—prefer that such a platform should not just be an object, but a companion,” says Kosuke Tatsumi, designer at Yukai Engineering, a startup that has developed the Bocco robot system.
At Hitachi, a spokesperson said that the company’s human symbiotic service robot, EMIEW3, robot is currently in the field, doing proof-of-value tests at customer sites to investigate needs and potential solutions. This could include working as an interactive control system for the Internet of Things:
“EMIEW3 is able to communicate with humans, thus receive instructions, and as it is connected to a robotics IT platform, it is very much capable of interacting with IoT-based systems,” the spokesperson said.
The power of speech is getting feet
Gartner analysis predicts that there will be 8.4 billion internet-connected devices—collectively making up the Internet of Things—by the end of 2017. 5.2 billion of those devices are in the consumer category. By the end of 2020, the number of IoT devices will rise to 12.8 billion—and that is just in the consumer category.
As a child of the 80s, I can vividly remember how fun it was to have separate remote controls for TV, video, and stereo. I can imagine a situation where my internet-connected refrigerator and ditto thermostat, television, and toaster try to work out who I’m talking to and what I want them to do.
Consensus seems to be that speech will be the way to interact with many/most IoT devices. The same goes for a form of virtual assistant functioning as the IoT platform—or remote control. Almost everything else is still an open ballgame, despite an early surge for speaker-based systems, like those from Amazon, Google, and Apple.
Why robots could rule
Famous android creator and robot scientist Dr. Hiroshi Ishiguro sees the interaction between humans and the AI embedded in speakers or robots as central to both approaches. From there, the approaches differ greatly.
Image Credit: Hiroshi Ishiguro Laboratories
“It is about more than the difference of form. Speaking to an Amazon Echo is not a natural kind of interaction for humans. That is part of what we in Japan are creating in many human-like robot systems,” he says. “The human brain is constructed to recognize and interact with humans. This is part of why it makes sense to focus on developing the body for the AI mind as well as the AI mind itself. In a way, you can describe it as the difference between developing an assistant, which could be said to be what many American companies are currently doing, and a companion, which is more the focus here in Japan.”
Another advantage is that robots are more kawaii—a multifaceted Japanese word that can be translated as “cute”—than speakers are. This makes it easy for people to relate to them and forgive them.
“People are more willing to forgive children when they make mistakes, and the same is true with a robot like Bocco, which is designed to look kawaii and childlike,” Kosuke Tatsumi explains.
Japanese robots and holograms with IoT-control capabilities
So, what exactly do these robot and hologram companions look like, what can they do, and who’s making them? Here are seven examples of Japanese companies working to go a step beyond smart speakers with personable robots and holograms.
1. In 2016 Sony’s mobile division demonstrated the Xperia Agent concept robot that recognizes individual users, is voice controlled, and can do things like control your television and receive calls from services like Skype.

2. Sharp launched their Home Assistant at CES 2016. A robot-like, voice-controlled assistant that can to control, among other things, air conditioning units, and televisions. Sharp has also launched a robotic phone called RoBoHon.
3. Gatebox has created a holographic virtual assistant. Evil tongues will say that it is primarily the expression of an otaku (Japanese for nerd) dream of living with a manga heroine. Gatebox is, however, able to control things like lights, TVs, and other systems through API integration. It also provides its owner with weather-related advice like “remember your umbrella, it looks like it will rain later.” Gatebox can be controlled by voice, gesture, or via an app.
4. Hitachi’s EMIEW3 robot is designed to assist people in businesses and public spaces. It is connected to a robot IT-platform via the cloud that acts as a “remote brain.” Hitachi is currently investigating the business use cases for EMIEW3. This could include the role of controlling platform for IoT devices.

5. Softbank’s Pepper robot has been used as a platform to control use of medical IoT devices such as smart thermometers by Avatarion. The company has also developed various in-house systems that enable Pepper to control IoT-devices like a coffee machine. A user simply asks Pepper to brew a cup of coffee, and it starts the coffee machine for you.
6. Yukai Engineering’s Bocco registers when a person (e.g., young child) comes home and acts as a communication center between that person and other members of the household (e.g., parent still at work). The company is working on integrating voice recognition, voice control, and having Bocco control things like the lights and other connected IoT devices.
7. Last year Toyota launched the Kirobo Mini, a companion robot which aims to, among other things, help its owner by suggesting “places to visit, routes for travel, and music to listen to” during the drive.

Today, Japan. Tomorrow…?
One of the key questions is whether this emerging phenomenon is a purely Japanese thing. If the country’s love of robots makes it fundamentally different. Japan is, after all, a country where new units of Softbank’s Pepper robot routinely sell out in minutes and the RoBoHon robot-phone has its own cafe nights in Tokyo.
It is a country where TV introduces you to friendly, helpful robots like Doraemon and Astro Boy. I, on the other hand, first met robots in the shape of Arnold Schwarzenegger’s Terminator and struggled to work out why robots seemed intent on permanently borrowing things like clothes and motorcycles, not to mention why they hated people called Sarah.
However, research suggests that a big part of the reason why Japanese seem to like robots is a combination of exposure and positive experiences that leads to greater acceptance of them. As robots spread to more and more industries—and into our homes—our acceptance of them will grow.
The argument is also backed by a project by Avatarion, which used Softbank’s Nao-robot as a classroom representative for children who were in the hospital.
“What we found was that the other children quickly adapted to interacting with the robot and treating it as the physical representation of the child who was in hospital. They accepted it very quickly,” Thierry Perronnet, General Manager of Avatarion, explains.
His company has also developed solutions where Softbank’s Pepper robot is used as an in-home nurse and controls various medical IoT devices.
If robots end up becoming our preferred method for controlling IoT devices, it is by no means certain that said robots will be coming from Japan.
“I think that the goal for both Japanese and American companies—including the likes of Google, Amazon, Microsoft, and Apple—is to create human-like interaction. For this to happen, technology needs to evolve and adapt to us and how we are used to interacting with others, in other words, have a more human form. Humans’ speed of evolution cannot keep up with technology’s, so it must be the technology that changes,” Dr. Ishiguro says.
Image Credit: Sony Mobile Communications Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431243 Does Our Survival Depend on Relentless ...

Malthus had a fever dream in the 1790s. While the world was marveling in the first manifestations of modern science and technology and the industrial revolution that was just beginning, he was concerned. He saw the exponential growth in the human population as a terrible problem for the species—an existential threat. He was afraid the human population would overshoot the availability of resources, and then things would really hit the fan.
“Famine seems to be the last, the most dreadful resource of nature. The power of population is so superior to the power of the earth to produce subsistence for man, that premature death must in some shape or other visit the human race. The vices of mankind are active and able ministers of depopulation.”
So Malthus wrote in his famous text, an essay on the principles of population.
But Malthus was wrong. Not just in his proposed solution, which was to stop giving aid and food to the poor so that they wouldn’t explode in population. His prediction was also wrong: there was no great, overwhelming famine that caused the population to stay at the levels of the 1790s. Instead, the world population—with a few dips—has continued to grow exponentially ever since. And it’s still growing.
There have concurrently been developments in agriculture and medicine and, in the 20th century, the Green Revolution, in which Norman Borlaug ensured that countries adopted high-yield varieties of crops—the first precursors to modern ideas of genetically engineering food to produce better crops and more growth. The world was able to produce an astonishing amount of food—enough, in the modern era, for ten billion people. It is only a grave injustice in the way that food is distributed that means 12 percent of the world goes hungry, and we still have starvation. But, aside from that, we were saved by the majesty of another kind of exponential growth; the population grew, but the ability to produce food grew faster.
In so much of the world around us today, there’s the same old story. Take exploitation of fossil fuels: here, there is another exponential race. The exponential growth of our ability to mine coal, extract natural gas, refine oil from ever more complex hydrocarbons: this is pitted against our growing appetite. The stock market is built on exponential growth; you cannot provide compound interest unless the economy grows by a certain percentage a year.

“This relentless and ruthless expectation—that technology will continue to improve in ways we can’t foresee—is not just baked into share prices, but into the very survival of our species.”

When the economy fails to grow exponentially, it’s considered a crisis: a financial catastrophe. This expectation penetrates down to individual investors. In the cryptocurrency markets—hardly immune from bubbles, the bull-and-bear cycle of economics—the traders’ saying is “Buy the hype, sell the news.” Before an announcement is made, the expectation of growth, of a boost—the psychological shift—is almost invariably worth more than whatever the major announcement turns out to be. The idea of growth is baked into the share price, to the extent that even good news can often cause the price to dip when it’s delivered.
In the same way, this relentless and ruthless expectation—that technology will continue to improve in ways we can’t foresee—is not just baked into share prices, but into the very survival of our species. A third of Earth’s soil has been acutely degraded due to agriculture; we are looming on the brink of a topsoil crisis. In less relentless times, we may have tried to solve the problem by letting the fields lie fallow for a few years. But that’s no longer an option: if we do so, people will starve. Instead, we look to a second Green Revolution—genetically modified crops, or hydroponics—to save us.
Climate change is considered by many to be an existential threat. The Intergovernmental Panel on Climate Change has already put their faith in the exponential growth of technology. Many of the scenarios where they can successfully imagine the human race dealing with the climate crisis involve the development and widespread deployment of carbon capture and storage technology. Our hope for the future already has built-in expectations of exponential growth in our technology in this field. Alongside this, to reduce carbon emissions to zero on the timescales we need to, we will surely require new technologies in renewable energy, energy efficiency, and electrification of the transport system.
Without exponential growth in technology continuing, then, we are doomed. Humanity finds itself on a treadmill that’s rapidly accelerating, with the risk of plunging into the abyss if we can’t keep up the pace. Yet this very acceleration could also pose an existential threat. As our global system becomes more interconnected and complex, chaos theory takes over: the economics of a town in Macedonia can influence a US presidential election; critical infrastructure can be brought down by cybercriminals.
New threats, such as biotechnology, nanotechnology, or a generalized artificial intelligence, could put incredible power—power over the entire species—into the hands of a small number of people. We are faced with a paradox: the continued existence of our system depends on the exponential growth of our capacities outpacing the exponential growth of our needs and desires. Yet this very growth will create threats that are unimaginably larger than any humans have faced before in history.

“It is necessary that we understand the consequences and prospects for exponential growth: that we understand the nature of the race that we’re in.”

Neo-Luddites may find satisfaction in rejecting the ill-effects of technology, but they will still live in a society where technology is the lifeblood that keeps the whole system pumping. Now, more than ever, it is necessary that we understand the consequences and prospects for exponential growth: that we understand the nature of the race that we’re in.
If we decide that limitless exponential growth on a finite planet is unsustainable, we need to plan for the transition to a new way of living before our ability to accelerate runs out. If we require new technologies or fields of study to enable this growth to continue, we must focus our efforts on these before anything else. If we want to survive the 21st century without major catastrophe, we don’t have a choice but to understand it. Almost by default, we’re all accelerationists now.
Image Credit: focal point / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment