Tag Archives: controlling

#434823 The Tangled Web of Turning Spider Silk ...

Spider-Man is one of the most popular superheroes of all time. It’s a bit surprising given that one of the more common phobias is arachnophobia—a debilitating fear of spiders.

Perhaps more fantastical is that young Peter Parker, a brainy high school science nerd, seemingly developed overnight the famous web-shooters and the synthetic spider silk that he uses to swing across the cityscape like Tarzan through the jungle.

That’s because scientists have been trying for decades to replicate spider silk, a material that is five times stronger than steel, among its many superpowers. In recent years, researchers have been untangling the protein-based fiber’s structure down to the molecular level, leading to new insights and new potential for eventual commercial uses.

The applications for such a material seem near endless. There’s the more futuristic visions, like enabling robotic “muscles” for human-like movement or ensnaring real-life villains with a Spider-Man-like web. Near-term applications could include the biomedical industry, such as bandages and adhesives, and as a replacement textile for everything from rope to seat belts to parachutes.

Spinning Synthetic Spider Silk
Randy Lewis has been studying the properties of spider silk and developing methods for producing it synthetically for more than three decades. In the 1990s, his research team was behind cloning the first spider silk gene, as well as the first to identify and sequence the proteins that make up the six different silks that web slingers make. Each has different mechanical properties.

“So our thought process was that you could take that information and begin to to understand what made them strong and what makes them stretchy, and why some are are very stretchy and some are not stretchy at all, and some are stronger and some are weaker,” explained Lewis, a biology professor at Utah State University and director of the Synthetic Spider Silk Lab, in an interview with Singularity Hub.

Spiders are naturally territorial and cannibalistic, so any intention to farm silk naturally would likely end in an orgy of arachnid violence. Instead, Lewis and company have genetically modified different organisms to produce spider silk synthetically, including inserting a couple of web-making genes into the genetic code of goats. The goats’ milk contains spider silk proteins.

The lab also produces synthetic spider silk through a fermentation process not entirely dissimilar to brewing beer, but using genetically modified bacteria to make the desired spider silk proteins. A similar technique has been used for years to make a key enzyme in cheese production. More recently, companies are using transgenic bacteria to make meat and milk proteins, entirely bypassing animals in the process.

The same fermentation technology is used by a chic startup called Bolt Threads outside of San Francisco that has raised more than $200 million for fashionable fibers made out of synthetic spider silk it calls Microsilk. (The company is also developing a second leather-like material, Mylo, using the underground root structure of mushrooms known as mycelium.)

Lewis’ lab also uses transgenic silkworms to produce a kind of composite material made up of the domesticated insect’s own silk proteins and those of spider silk. “Those have some fairly impressive properties,” Lewis said.

The researchers are even experimenting with genetically modified alfalfa. One of the big advantages there is that once the spider silk protein has been extracted, the remaining protein could be sold as livestock feed. “That would bring the cost of spider silk protein production down significantly,” Lewis said.

Building a Better Web
Producing synthetic spider silk isn’t the problem, according to Lewis, but the ability to do it at scale commercially remains a sticking point.

Another challenge is “weaving” the synthetic spider silk into usable products that can take advantage of the material’s marvelous properties.

“It is possible to make silk proteins synthetically, but it is very hard to assemble the individual proteins into a fiber or other material forms,” said Markus Buehler, head of the Department of Civil and Environmental Engineering at MIT, in an email to Singularity Hub. “The spider has a complex spinning duct in which silk proteins are exposed to physical forces, chemical gradients, the combination of which generates the assembly of molecules that leads to silk fibers.”

Buehler recently co-authored a paper in the journal Science Advances that found dragline spider silk exhibits different properties in response to changes in humidity that could eventually have applications in robotics.

Specifically, spider silk suddenly contracts and twists above a certain level of relative humidity, exerting enough force to “potentially be competitive with other materials being explored as actuators—devices that move to perform some activity such as controlling a valve,” according to a press release.

Studying Spider Silk Up Close
Recent studies at the molecular level are helping scientists learn more about the unique properties of spider silk, which may help researchers develop materials with extraordinary capabilities.

For example, scientists at Arizona State University used magnetic resonance tools and other instruments to image the abdomen of a black widow spider. They produced what they called the first molecular-level model of spider silk protein fiber formation, providing insights on the nanoparticle structure. The research was published last October in Proceedings of the National Academy of Sciences.

A cross section of the abdomen of a black widow (Latrodectus Hesperus) spider used in this study at Arizona State University. Image Credit: Samrat Amin.
Also in 2018, a study presented in Nature Communications described a sort of molecular clamp that binds the silk protein building blocks, which are called spidroins. The researchers observed for the first time that the clamp self-assembles in a two-step process, contributing to the extensibility, or stretchiness, of spider silk.

Another team put the spider silk of a brown recluse under an atomic force microscope, discovering that each strand, already 1,000 times thinner than a human hair, is made up of thousands of nanostrands. That helps explain its extraordinary tensile strength, though technique is also a factor, as the brown recluse uses a special looping method to reinforce its silk strands. The study also appeared last year in the journal ACS Macro Letters.

Making Spider Silk Stick
Buehler said his team is now trying to develop better and faster predictive methods to design silk proteins using artificial intelligence.

“These new methods allow us to generate new protein designs that do not naturally exist and which can be explored to optimize certain desirable properties like torsional actuation, strength, bioactivity—for example, tissue engineering—and others,” he said.

Meanwhile, Lewis’ lab has discovered a method that allows it to solubilize spider silk protein in what is essentially a water-based solution, eschewing acids or other toxic compounds that are normally used in the process.

That enables the researchers to develop materials beyond fiber, including adhesives that “are better than an awful lot of the current commercial adhesives,” Lewis said, as well as coatings that could be used to dampen vibrations, for example.

“We’re making gels for various kinds of of tissue regeneration, as well as drug delivery, and things like that,” he added. “So we’ve expanded the use profile from something beyond fibers to something that is a much more extensive portfolio of possible kinds of materials.”

And, yes, there’s even designs at the Synthetic Spider Silk Lab for developing a Spider-Man web-slinger material. The US Navy is interested in non-destructive ways of disabling an enemy vessel, such as fouling its propeller. The project also includes producing synthetic proteins from the hagfish, an eel-like critter that exudes a gelatinous slime when threatened.

Lewis said that while the potential for spider silk is certainly headline-grabbing, he cautioned that much of the hype is not focused on the unique mechanical properties that could lead to advances in healthcare and other industries.

“We want to see spider silk out there because it’s a unique material, not because it’s got marketing appeal,” he said.

Image Credit: mycteria / Shutterstock.com Continue reading

Posted in Human Robots

#434753 Top Takeaways From The Economist ...

Over the past few years, the word ‘innovation’ has degenerated into something of a buzzword. In fact, according to Vijay Vaitheeswaran, US business editor at The Economist, it’s one of the most abused words in the English language.

The word is over-used precisely because we’re living in a great age of invention. But the pace at which those inventions are changing our lives is fast, new, and scary.

So what strategies do companies need to adopt to make sure technology leads to growth that’s not only profitable, but positive? How can business and government best collaborate? Can policymakers regulate the market without suppressing innovation? Which technologies will impact us most, and how soon?

At The Economist Innovation Summit in Chicago last week, entrepreneurs, thought leaders, policymakers, and academics shared their insights on the current state of exponential technologies, and the steps companies and individuals should be taking to ensure a tech-positive future. Here’s their expert take on the tech and trends shaping the future.

There’s been a lot of hype around blockchain; apparently it can be used for everything from distributing aid to refugees to voting. However, it’s too often conflated with cryptocurrencies like Bitcoin, and we haven’t heard of many use cases. Where does the technology currently stand?

Julie Sweet, chief executive of Accenture North America, emphasized that the technology is still in its infancy. “Everything we see today are pilots,” she said. The most promising of these pilots are taking place across three different areas: supply chain, identity, and financial services.

When you buy something from outside the US, Sweet explained, it goes through about 80 different parties. 70 percent of the relevant data is replicated and is prone to error, with paper-based documents often to blame. Blockchain is providing a secure way to eliminate paper in supply chains, upping accuracy and cutting costs in the process.

One of the most prominent use cases in the US is Walmart—the company has mandated that all suppliers in its leafy greens segment be on a blockchain, and its food safety has improved as a result.

Beth Devin, head of Citi Ventures’ innovation network, added “Blockchain is an infrastructure technology. It can be leveraged in a lot of ways. There’s so much opportunity to create new types of assets and securities that aren’t accessible to people today. But there’s a lot to figure out around governance.”

Open Source Technology
Are the days of proprietary technology numbered? More and more companies and individuals are making their source code publicly available, and its benefits are thus more widespread than ever before. But what are the limitations and challenges of open source tech, and where might it go in the near future?

Bob Lord, senior VP of cognitive applications at IBM, is a believer. “Open-sourcing technology helps innovation occur, and it’s a fundamental basis for creating great technology solutions for the world,” he said. However, the biggest challenge for open source right now is that companies are taking out more than they’re contributing back to the open-source world. Lord pointed out that IBM has a rule about how many lines of code employees take out relative to how many lines they put in.

Another challenge area is open governance; blockchain by its very nature should be transparent and decentralized, with multiple parties making decisions and being held accountable. “We have to embrace open governance at the same time that we’re contributing,” Lord said. He advocated for a hybrid-cloud environment where people can access public and private data and bring it together.

Augmented and Virtual Reality
Augmented and virtual reality aren’t just for fun and games anymore, and they’ll be even less so in the near future. According to Pearly Chen, vice president at HTC, they’ll also go from being two different things to being one and the same. “AR overlays digital information on top of the real world, and VR transports you to a different world,” she said. “In the near future we will not need to delineate between these two activities; AR and VR will come together naturally, and will change everything we do as we know it today.”

For that to happen, we’ll need a more ergonomically friendly device than we have today for interacting with this technology. “Whenever we use tech today, we’re multitasking,” said product designer and futurist Jody Medich. “When you’re using GPS, you’re trying to navigate in the real world and also manage this screen. Constant task-switching is killing our brain’s ability to think.” Augmented and virtual reality, she believes, will allow us to adapt technology to match our brain’s functionality.

This all sounds like a lot of fun for uses like gaming and entertainment, but what about practical applications? “Ultimately what we care about is how this technology will improve lives,” Chen said.

A few ways that could happen? Extended reality will be used to simulate hazardous real-life scenarios, reduce the time and resources needed to bring a product to market, train healthcare professionals (such as surgeons), or provide therapies for patients—not to mention education. “Think about the possibilities for children to learn about history, science, or math in ways they can’t today,” Chen said.

Quantum Computing
If there’s one technology that’s truly baffling, it’s quantum computing. Qubits, entanglement, quantum states—it’s hard to wrap our heads around these concepts, but they hold great promise. Where is the tech right now?

Mandy Birch, head of engineering strategy at Rigetti Computing, thinks quantum development is starting slowly but will accelerate quickly. “We’re at the innovation stage right now, trying to match this capability to useful applications,” she said. “Can we solve problems cheaper, better, and faster than classical computers can do?” She believes quantum’s first breakthrough will happen in two to five years, and that is highest potential is in applications like routing, supply chain, and risk optimization, followed by quantum chemistry (for materials science and medicine) and machine learning.

David Awschalom, director of the Chicago Quantum Exchange and senior scientist at Argonne National Laboratory, believes quantum communication and quantum sensing will become a reality in three to seven years. “We’ll use states of matter to encrypt information in ways that are completely secure,” he said. A quantum voting system, currently being prototyped, is one application.

Who should be driving quantum tech development? The panelists emphasized that no one entity will get very far alone. “Advancing quantum tech will require collaboration not only between business, academia, and government, but between nations,” said Linda Sapochak, division director of materials research at the National Science Foundation. She added that this doesn’t just go for the technology itself—setting up the infrastructure for quantum will be a big challenge as well.

Space has always been the final frontier, and it still is—but it’s not quite as far-removed from our daily lives now as it was when Neil Armstrong walked on the moon in 1969.

The space industry has always been funded by governments and private defense contractors. But in 2009, SpaceX launched its first commercial satellite, and in subsequent years have drastically cut the cost of spaceflight. More importantly, they published their pricing, which brought transparency to a market that hadn’t seen it before.

Entrepreneurs around the world started putting together business plans, and there are now over 400 privately-funded space companies, many with consumer applications.

Chad Anderson, CEO of Space Angels and managing partner of Space Capital, pointed out that the technology floating around in space was, until recently, archaic. “A few NASA engineers saw they had more computing power in their phone than there was in satellites,” he said. “So they thought, ‘why don’t we just fly an iPhone?’” They did—and it worked.

Now companies have networks of satellites monitoring the whole planet, producing a huge amount of data that’s valuable for countless applications like agriculture, shipping, and observation. “A lot of people underestimate space,” Anderson said. “It’s already enabling our modern global marketplace.”

Next up in the space realm, he predicts, are mining and tourism.

Artificial Intelligence and the Future of Work
From the US to Europe to Asia, alarms are sounding about AI taking our jobs. What will be left for humans to do once machines can do everything—and do it better?

These fears may be unfounded, though, and are certainly exaggerated. It’s undeniable that AI and automation are changing the employment landscape (not to mention the way companies do business and the way we live our lives), but if we build these tools the right way, they’ll bring more good than harm, and more productivity than obsolescence.

Accenture’s Julie Sweet emphasized that AI alone is not what’s disrupting business and employment. Rather, it’s what she called the “triple A”: automation, analytics, and artificial intelligence. But even this fear-inducing trifecta of terms doesn’t spell doom, for workers or for companies. Accenture has automated 40,000 jobs—and hasn’t fired anyone in the process. Instead, they’ve trained and up-skilled people. The most important drivers to scale this, Sweet said, are a commitment by companies and government support (such as tax credits).

Imbuing AI with the best of human values will also be critical to its impact on our future. Tracy Frey, Google Cloud AI’s director of strategy, cited the company’s set of seven AI principles. “What’s important is the governance process that’s put in place to support those principles,” she said. “You can’t make macro decisions when you have technology that can be applied in many different ways.”

High Risks, High Stakes
This year, Vaitheeswaran said, 50 percent of the world’s population will have internet access (he added that he’s disappointed that percentage isn’t higher given the proliferation of smartphones). As technology becomes more widely available to people around the world and its influence grows even more, what are the biggest risks we should be monitoring and controlling?

Information integrity—being able to tell what’s real from what’s fake—is a crucial one. “We’re increasingly operating in siloed realities,” said Renee DiResta, director of research at New Knowledge and head of policy at Data for Democracy. “Inadvertent algorithmic amplification on social media elevates certain perspectives—what does that do to us as a society?”

Algorithms have also already been proven to perpetuate the bias of the people who create it—and those people are often wealthy, white, and male. Ensuring that technology doesn’t propagate unfair bias will be crucial to its ability to serve a diverse population, and to keep societies from becoming further polarized and inequitable. The polarization of experience that results from pronounced inequalities within countries, Vaitheeswaran pointed out, can end up undermining democracy.

We’ll also need to walk the line between privacy and utility very carefully. As Dan Wagner, founder of Civis Analytics put it, “We want to ensure privacy as much as possible, but open access to information helps us achieve important social good.” Medicine in the US has been hampered by privacy laws; if, for example, we had more data about biomarkers around cancer, we could provide more accurate predictions and ultimately better healthcare.

But going the Chinese way—a total lack of privacy—is likely not the answer, either. “We have to be very careful about the way we bake rights and freedom into our technology,” said Alex Gladstein, chief strategy officer at Human Rights Foundation.

Technology’s risks are clearly as fraught as its potential is promising. As Gary Shapiro, chief executive of the Consumer Technology Association, put it, “Everything we’ve talked about today is simply a tool, and can be used for good or bad.”

The decisions we’re making now, at every level—from the engineers writing algorithms, to the legislators writing laws, to the teenagers writing clever Instagram captions—will determine where on the spectrum we end up.

Image Credit: Rudy Balasko / Shutterstock.com Continue reading

Posted in Human Robots

#434616 What Games Are Humans Still Better at ...

Artificial intelligence (AI) systems’ rapid advances are continually crossing rows off the list of things humans do better than our computer compatriots.

AI has bested us at board games like chess and Go, and set astronomically high scores in classic computer games like Ms. Pacman. More complex games form part of AI’s next frontier.

While a team of AI bots developed by OpenAI, known as the OpenAI Five, ultimately lost to a team of professional players last year, they have since been running rampant against human opponents in Dota 2. Not to be outdone, Google’s DeepMind AI recently took on—and beat—several professional players at StarCraft II.

These victories beg the questions: what games are humans still better at than AI? And for how long?

The Making Of AlphaStar
DeepMind’s results provide a good starting point in a search for answers. The version of its AI for StarCraft II, dubbed AlphaStar, learned to play the games through supervised learning and reinforcement learning.

First, AI agents were trained by analyzing and copying human players, learning basic strategies. The initial agents then played each other in a sort of virtual death match where the strongest agents stayed on. New iterations of the agents were developed and entered the competition. Over time, the agents became better and better at the game, learning new strategies and tactics along the way.

One of the advantages of AI is that it can go through this kind of process at superspeed and quickly develop better agents. DeepMind researchers estimate that the AlphaStar agents went through the equivalent of roughly 200 years of game time in about 14 days.

Cheating or One Hand Behind the Back?
The AlphaStar AI agents faced off against human professional players in a series of games streamed on YouTube and Twitch. The AIs trounced their human opponents, winning ten games on the trot, before pro player Grzegorz “MaNa” Komincz managed to salvage some pride for humanity by winning the final game. Experts commenting on AlphaStar’s performance used words like “phenomenal” and “superhuman”—which was, to a degree, where things got a bit problematic.

AlphaStar proved particularly skilled at controlling and directing units in battle, known as micromanagement. One reason was that it viewed the whole game map at once—something a human player is not able to do—which made it seemingly able to control units in different areas at the same time. DeepMind researchers said the AIs only focused on a single part of the map at any given time, but interestingly, AlphaStar’s AI agent was limited to a more restricted camera view during the match “MaNA” won.

Potentially offsetting some of this advantage was the fact that AlphaStar was also restricted in certain ways. For example, it was prevented from performing more clicks per minute than a human player would be able to.

Where AIs Struggle
Games like StarCraft II and Dota 2 throw a lot of challenges at AIs. Complex game theory/ strategies, operating with imperfect/incomplete information, undertaking multi-variable and long-term planning, real-time decision-making, navigating a large action space, and making a multitude of possible decisions at every point in time are just the tip of the iceberg. The AIs’ performance in both games was impressive, but also highlighted some of the areas where they could be said to struggle.

In Dota 2 and StarCraft II, AI bots have seemed more vulnerable in longer games, or when confronted with surprising, unfamiliar strategies. They seem to struggle with complexity over time and improvisation/adapting to quick changes. This could be tied to how AIs learn. Even within the first few hours of performing a task, humans tend to gain a sense of familiarity and skill that takes an AI much longer. We are also better at transferring skill from one area to another. In other words, experience playing Dota 2 can help us become good at StarCraft II relatively quickly. This is not the case for AI—yet.

Dwindling Superiority
While the battle between AI and humans for absolute superiority is still on in Dota 2 and StarCraft II, it looks likely that AI will soon reign supreme. Similar things are happening to other types of games.

In 2017, a team from Carnegie Mellon University pitted its Libratus AI against four professionals. After 20 days of No Limit Texas Hold’em, Libratus was up by $1.7 million. Another likely candidate is the destroyer of family harmony at Christmas: Monopoly.

Poker involves bluffing, while Monopoly involves negotiation—skills you might not think AI would be particularly suited to handle. However, an AI experiment at Facebook showed that AI bots are more than capable of undertaking such tasks. The bots proved skilled negotiators, and developed negotiating strategies like pretending interest in one object while they were interested in another altogether—bluffing.

So, what games are we still better at than AI? There is no precise answer, but the list is getting shorter at a rapid pace.

The Aim Of the Game
While AI’s mastery of games might at first glance seem an odd area to focus research on, the belief is that the way AI learn to master a game is transferrable to other areas.

For example, the Libratus poker-playing AI employed strategies that could work in financial trading or political negotiations. The same applies to AlphaStar. As Oriol Vinyals, co-leader of the AlphaStar project, told The Verge:

“First and foremost, the mission at DeepMind is to build an artificial general intelligence. […] To do so, it’s important to benchmark how our agents perform on a wide variety of tasks.”

A 2017 survey of more than 350 AI researchers predicts AI could be a better driver than humans within ten years. By the middle of the century, AI will be able to write a best-selling novel, and a few years later, it will be better than humans at surgery. By the year 2060, AI may do everything better than us.

Whether you think this is a good or a bad thing, it’s worth noting that AI has an often overlooked ability to help us see things differently. When DeepMind’s AlphaGo beat human Go champion Lee Sedol, the Go community learned from it, too. Lee himself went on a win streak after the match with AlphaGo. The same is now happening within the Dota 2 and StarCraft II communities that are studying the human vs. AI games intensely.

More than anything, AI’s recent gaming triumphs illustrate how quickly artificial intelligence is developing. In 1997, Dr. Piet Hut, an astrophysicist at the Institute for Advanced Study at Princeton and a GO enthusiast, told the New York Times that:

”It may be a hundred years before a computer beats humans at Go—maybe even longer.”

Image Credit: Roman Kosolapov / Shutterstock.com Continue reading

Posted in Human Robots

#434492 Black Mirror’s ‘Bandersnatch’ ...

When was the last time you watched a movie where you could control the plot?

Bandersnatch is the first interactive film in the sci fi anthology series Black Mirror. Written by series creator Charlie Brooker and directed by David Slade, the film tells the story of young programmer Stefan Butler, who is adapting a fantasy choose-your-own-adventure novel called Bandersnatch into a video game. Throughout the film, viewers are given the power to influence Butler’s decisions, leading to diverging plots with different endings.

Like many Black Mirror episodes, this film is mind-bending, dark, and thought-provoking. In addition to innovating cinema as we know it, it is a fascinating rumination on free will, parallel realities, and emerging technologies.

Pick Your Own Adventure
With a non-linear script, Bandersnatch is a viewing experience like no other. Throughout the film viewers are given the option of making a decision for the protagonist. In these instances, they have 10 seconds to make a decision until a default decision is made. For example, in the early stage of the plot, Butler is given the choice of accepting or rejecting Tuckersoft’s offer to develop a video game and the viewer gets to decide what he does. The decision then shapes the plot accordingly.

The video game Butler is developing involves moving through a graphical maze of corridors while avoiding a creature called the Pax, and at times making choices through an on-screen instruction (sound familiar?). In other words, it’s a pick-your-own-adventure video game in a pick-your-own-adventure movie.

Many viewers have ended up spending hours exploring all the different branches of the narrative (though the average viewing is 90 minutes). One user on reddit has mapped out an entire flowchart, showing how all the different decisions (and pseudo-decisions) lead to various endings.

However, over time, Butler starts to question his own free will. It’s almost as if he’s beginning to realize that the audience is controlling him. In one branch of the narrative, he is confronted by this reality when the audience indicates to him that he is being controlled in a Netflix show: “I am watching you on Netflix. I make all the decisions for you”. Butler, as you can imagine, is horrified by this message.

But Butler isn’t the only one who has an illusion of choice. We, the seemingly powerful viewers, also appear to operate under the illusion of choice. Despite there being five main endings to the film, they are all more or less the same.

The Science Behind Bandersnatch
The premise of Bandersnatch isn’t based on fantasy, but hard science. Free will has always been a widely-debated issue in neuroscience, with reputable scientists and studies demonstrating that the whole concept may be an illusion.

In the 1970s, a psychologist named Benjamin Libet conducted a series of experiments that studied voluntary decision making in humans. He found that brain activity imitating an action, such as moving your wrist, preceded the conscious awareness of the action.

Psychologist Malcom Gladwell theorizes that while we like to believe we spend a lot of time thinking about our decisions, our mental processes actually work rapidly, automatically, and often subconsciously, from relatively little information. In addition to this, thinking and making decisions are usually a byproduct of several different brain systems, such as the hippocampus, amygdala, and prefrontal cortex working together. You are more conscious of some information processes in the brain than others.

As neuroscientist and philosopher Sam Harris points out in his book Free Will, “You did not pick your parents or the time and place of your birth. You didn’t choose your gender or most of your life experiences. You had no control whatsoever over your genome or the development of your brain. And now your brain is making choices on the basis of preferences and beliefs that have been hammered into it over a lifetime.” Like Butler, we may believe we are operating under full agency of our abilities, but we are at the mercy of many internal and external factors that influence our decisions.

Beyond free will, Bandersnatch also taps into the theory of parallel universes, a facet of the astronomical theory of the multiverse. In astrophysics, there is a theory that there are parallel universes other than our own, where all the choices you made are played out in alternate realities. For instance, if today you had the option of having cereal or eggs for breakfast, and you chose eggs, in a parallel universe, you chose cereal. Human history and our lives may have taken different paths in these parallel universes.

The Future of Cinema
In the future, the viewing experience will no longer be a passive one. Bandersnatch is just a glimpse into how technology is revolutionizing film as we know it and making it a more interactive and personalized experience. All the different scenarios and branches of the plot were scripted and filmed, but in the future, they may be adapted real-time via artificial intelligence.

Virtual reality may allow us to play an even more active role by making us participants or characters in the film. Data from your history of preferences and may be used to create a unique version of the plot that is optimized for your viewing experience.

Let’s also not underestimate the social purpose of advancing film and entertainment. Science fiction gives us the ability to create simulations of the future. Different narratives can allow us to explore how powerful technologies combined with human behavior can result in positive or negative scenarios. Perhaps in the future, science fiction will explore implications of technologies and observe human decision making in novel contexts, via AI-powered films in the virtual world.

Image Credit: andrey_l / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#432331 $10 million XPRIZE Aims for Robot ...

Ever wished you could be in two places at the same time? The XPRIZE Foundation wants to make that a reality with a $10 million competition to build robot avatars that can be controlled from at least 100 kilometers away.

The competition was announced by XPRIZE founder Peter Diamandis at the SXSW conference in Austin last week, with an ambitious timeline of awarding the grand prize by October 2021. Teams have until October 31st to sign up, and they need to submit detailed plans to a panel of judges by the end of next January.

The prize, sponsored by Japanese airline ANA, has given contestants little guidance on how they expect them to solve the challenge other than saying their solutions need to let users see, hear, feel, and interact with the robot’s environment as well as the people in it.

XPRIZE has also not revealed details of what kind of tasks the robots will be expected to complete, though they’ve said tasks will range from “simple” to “complex,” and it should be possible for an untrained operator to use them.

That’s a hugely ambitious goal that’s likely to require teams to combine multiple emerging technologies, from humanoid robotics to virtual reality high-bandwidth communications and high-resolution haptics.

If any of the teams succeed, the technology could have myriad applications, from letting emergency responders enter areas too hazardous for humans to helping people care for relatives who live far away or even just allowing tourists to visit other parts of the world without the jet lag.

“Our ability to physically experience another geographic location, or to provide on-the-ground assistance where needed, is limited by cost and the simple availability of time,” Diamandis said in a statement.

“The ANA Avatar XPRIZE can enable creation of an audacious alternative that could bypass these limitations, allowing us to more rapidly and efficiently distribute skill and hands-on expertise to distant geographic locations where they are needed, bridging the gap between distance, time, and cultures,” he added.

Interestingly, the technology may help bypass an enduring hand break on the widespread use of robotics: autonomy. By having a human in the loop, you don’t need nearly as much artificial intelligence analyzing sensory input and making decisions.

Robotics software is doing a lot more than just high-level planning and strategizing, though. While a human moves their limbs instinctively without consciously thinking about which muscles to activate, controlling and coordinating a robot’s components requires sophisticated algorithms.

The DARPA Robotics Challenge demonstrated just how hard it was to get human-shaped robots to do tasks humans would find simple, such as opening doors, climbing steps, and even just walking. These robots were supposedly semi-autonomous, but on many tasks they were essentially tele-operated, and the results suggested autonomy isn’t the only problem.

There’s also the issue of powering these devices. You may have noticed that in a lot of the slick web videos of humanoid robots doing cool things, the machine is attached to the roof by a large cable. That’s because they suck up huge amounts of power.

Possibly the most advanced humanoid robot—Boston Dynamics’ Atlas—has a battery, but it can only run for about an hour. That might be fine for some applications, but you don’t want it running out of juice halfway through rescuing someone from a mine shaft.

When it comes to the link between the robot and its human user, some of the technology is probably not that much of a stretch. Virtual reality headsets can create immersive audio-visual environments, and a number of companies are working on advanced haptic suits that will let people “feel” virtual environments.

Motion tracking technology may be more complicated. While even consumer-grade devices can track peoples’ movements with high accuracy, you will probably need to don something more like an exoskeleton that can both pick up motion and provide mechanical resistance, so that when the robot bumps into an immovable object, the user stops dead too.

How hard all of this will be is also dependent on how the competition ultimately defines subjective terms like “feel” and “interact.” Will the user need to be able to feel a gentle breeze on the robot’s cheek or be able to paint a watercolor? Or will simply having the ability to distinguish a hard object from a soft one or shake someone’s hand be enough?

Whatever the fidelity they decide on, the approach will require huge amounts of sensory and control data to be transmitted over large distances, most likely wirelessly, in a way that’s fast and reliable enough that there’s no lag or interruptions. Fortunately 5G is launching this year, with a speed of 10 gigabits per second and very low latency, so this problem should be solved by 2021.

And it’s worth remembering there have already been some tentative attempts at building robotic avatars. Telepresence robots have solved the seeing, hearing, and some of the interacting problems, and MIT has already used virtual reality to control robots to carry out complex manipulation tasks.

South Korean company Hankook Mirae Technology has also unveiled a 13-foot-tall robotic suit straight out of a sci-fi movie that appears to have made some headway with the motion tracking problem, albeit with a human inside the robot. Toyota’s T-HR3 does the same, but with the human controlling the robot from a “Master Maneuvering System” that marries motion tracking with VR.

Combining all of these capabilities into a single machine will certainly prove challenging. But if one of the teams pulls it off, you may be able to tick off trips to the Seven Wonders of the World without ever leaving your house.

Image Credit: ANA Avatar XPRIZE Continue reading

Posted in Human Robots