Tag Archives: computers

#432512 How Will Merging Minds and Machines ...

One of the most exciting and frightening outcomes of technological advancement is the potential to merge our minds with machines. If achieved, this would profoundly boost our cognitive capabilities. More importantly, however, it could be a revolution in human identity, emotion, spirituality, and self-awareness.

Brain-machine interface technology is already being developed by pioneers and researchers around the globe. It’s still early and today’s tech is fairly rudimentary, but it’s a fast-moving field, and some believe it will advance faster than generally expected. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to connect our brains to the internet via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” Even if the advances are less dramatic, however, they’ll have significant implications.

How might this technology affect human consciousness? What about its implications on our sentience, self-awareness, or subjective experience of our illusion of self?

Consciousness can be hard to define, but a holistic definition often encompasses many of our most fundamental capacities, such as wakefulness, self-awareness, meta-cognition, and sense of agency. Beyond that, consciousness represents a spectrum of awareness, as seen across various species of animals. Even humans experience different levels of existential awareness.

From psychedelics to meditation, there are many tools we already use to alter and heighten our conscious experience, both temporarily and permanently. These tools have been said to contribute to a richer life, with the potential to bring experiences of beauty, love, inner peace, and transcendence. Relatively non-invasive, these tools show us what a seemingly minor imbalance of neurochemistry and conscious internal effort can do to the subjective experience of being human.

Taking this into account, what implications might emerging brain-machine interface technologies have on the “self”?

The Tools for Self-Transcendence
At the basic level, we are currently seeing the rise of “consciousness hackers” using techniques like non-invasive brain stimulation through EEG, nutrition, virtual reality, and ecstatic experiences to create environments for heightened consciousness and self-awareness. In Stealing Fire, Steven Kotler and Jamie Wheal explore this trillion-dollar altered-states economy and how innovators and thought leaders are “harnessing rare and controversial states of consciousness to solve critical challenges and outperform the competition.” Beyond enhanced productivity, these altered states expose our inner potential and give us a glimpse of a greater state of being.

Expanding consciousness through brain augmentation and implants could one day be just as accessible. Researchers are working on an array of neurotechnologies as simple and non-invasive as electrode-based EEGs to invasive implants and techniques like optogenetics, where neurons are genetically reprogrammed to respond to pulses of light. We’ve already connected two brains via the internet, allowing the two to communicate, and future-focused startups are researching the possibilities too. With an eye toward advanced brain-machine interfaces, last year Elon Musk unveiled Neuralink, a company whose ultimate goal is to merge the human mind with AI through a “neural lace.”

Many technologists predict we will one day merge with and, more speculatively, upload our minds onto machines. Neuroscientist Kenneth Hayworth writes in Skeptic magazine, “All of today’s neuroscience models are fundamentally computational by nature, supporting the theoretical possibility of mind-uploading.” This might include connecting with other minds using digital networks or even uploading minds onto quantum computers, which can be in multiple states of computation at a given time.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. With advancements in genetic engineering, we are indeed seeing evolution become an increasingly conscious process with an accelerated pace. This could one day apply to the evolution of our consciousness as well; we would be using our consciousness to expand our consciousness.

What Will It Feel Like?
We may be able to come up with predictions of the impact of these technologies on society, but we can only wonder what they will feel like subjectively.

It’s hard to imagine, for example, what our stream of consciousness will feel like when we can process thoughts and feelings 1,000 times faster, or how artificially intelligent brain implants will impact our capacity to love and hate. What will the illusion of “I” feel like when our consciousness is directly plugged into the internet? Overall, what impact will the process of merging with technology have on the subjective experience of being human?

The Evolution of Consciousness
In The Future Evolution of Consciousness, Thomas Lombardo points out, “We are a journey rather than a destination—a chapter in the evolutionary saga rather than a culmination. Just as probable, there will also be a diversification of species and types of conscious minds. It is also very likely that new psychological capacities, incomprehensible to us, will emerge as well.”

Humans are notorious for fearing the unknown. For any individual who has never experienced an altered state, be it spiritual or psychedelic-induced, it is difficult to comprehend the subjective experience of that state. It is why many refer to their first altered-state experience as “waking up,” wherein they didn’t even realize they were asleep.

Similarly, exponential neurotechnology represents the potential of a higher state of consciousness and a range of experiences that are unimaginable to our current default state.

Our capacity to think and feel is set by the boundaries of our biological brains. To transform and expand these boundaries is to transform and expand the first-hand experience of consciousness. Emerging neurotechnology may end up providing the awakening our species needs.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots

#432262 How We Can ‘Robot-Proof’ Education ...

Like millions of other individuals in the workforce, you’re probably wondering if you will one day be replaced by a machine. If you’re a student, you’re probably wondering if your chosen profession will even exist by the time you’ve graduated. From driving to legal research, there isn’t much that technology hasn’t already automated (or begun to automate). Many of us will need to adapt to this disruption in the workforce.

But it’s not enough for students and workers to adapt, become lifelong learners, and re-skill themselves. We also need to see innovation and initiative at an institutional and governmental level. According to research by The Economist, almost half of all jobs could be automated by computers within the next two decades, and no government in the world is prepared for it.

While many see the current trend in automation as a terrifying threat, others see it as an opportunity. In Robot-Proof: Higher Education in the Age of Artificial Intelligence, Northeastern University president Joseph Aoun proposes educating students in a way that will allow them to do the things that machines can’t. He calls for a new paradigm that teaches young minds “to invent, to create, and to discover”—filling the relevant needs of our world that robots simply can’t fill. Aoun proposes a much-needed novel framework that will allow us to “robot-proof” education.

Literacies and Core Cognitive Capacities of the Future
Aoun lays a framework for a new discipline, humanics, which discusses the important capacities and literacies for emerging education systems. At its core, the framework emphasizes our uniquely human abilities and strengths.

The three key literacies include data literacy (being able to manage and analyze big data), technological literacy (being able to understand exponential technologies and conduct computational thinking), and human literacy (being able to communicate and evaluate social, ethical, and existential impact).

Beyond the literacies, at the heart of Aoun’s framework are four cognitive capacities that are crucial to develop in our students if they are to be resistant to automation: critical thinking, systems thinking, entrepreneurship, and cultural agility.

“These capacities are mindsets rather than bodies of knowledge—mental architecture rather than mental furniture,” he writes. “Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace, but that alone will not be enough when intelligent machines are doing much of the heavy lifting of information. To succeed, tomorrow’s employees will have to demonstrate a higher order of thought.”

Like many other experts in education, Joseph Aoun emphasizes the importance of critical thinking. This is important not just when it comes to taking a skeptical approach to information, but also being able to logically break down a claim or problem into multiple layers of analysis. We spend so much time teaching students how to answer questions that we often neglect to teach them how to ask questions. Asking questions—and asking good ones—is a foundation of critical thinking. Before you can solve a problem, you must be able to critically analyze and question what is causing it. This is why critical thinking and problem solving are coupled together.

The second capacity, systems thinking, involves being able to think holistically about a problem. The most creative problem-solvers and thinkers are able to take a multidisciplinary perspective and connect the dots between many different fields. According to Aoun, it “involves seeing across areas that machines might be able to comprehend individually but that they cannot analyze in an integrated way, as a whole.” It represents the absolute opposite of how most traditional curricula is structured with emphasis on isolated subjects and content knowledge.

Among the most difficult-to-automate tasks or professions is entrepreneurship.

In fact, some have gone so far as to claim that in the future, everyone will be an entrepreneur. Yet traditionally, initiative has been something students show in spite of or in addition to their schoolwork. For most students, developing a sense of initiative and entrepreneurial skills has often been part of their extracurricular activities. It needs to be at the core of our curricula, not a supplement to it. At its core, teaching entrepreneurship is about teaching our youth to solve complex problems with resilience, to become global leaders, and to solve grand challenges facing our species.

Finally, with an increasingly globalized world, there is a need for more workers with cultural agility, the ability to build amongst different cultural contexts and norms.

One of the major trends today is the rise of the contingent workforce. We are seeing an increasing percentage of full-time employees working on the cloud. Multinational corporations have teams of employees collaborating at different offices across the planet. Collaboration across online networks requires a skillset of its own. As education expert Tony Wagner points out, within these digital contexts, leadership is no longer about commanding with top-down authority, but rather about leading by influence.

An Emphasis on Creativity
The framework also puts an emphasis on experiential or project-based learning, wherein the heart of the student experience is not lectures or exams but solving real-life problems and learning by doing, creating, and executing. Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.

In fact, technological trends are giving rise to what many thought leaders refer to as the imagination economy. This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Consequently, we need to develop our students’ creative abilities to ensure their success against machines.

In its simplest form, creativity represents the ability to imagine radical ideas and then go about executing them in reality.

In many ways, we are already living in our creative imaginations. Consider this: every invention or human construct—whether it be the spaceship, an architectural wonder, or a device like an iPhone—once existed as a mere idea, imagined in someone’s mind. The world we have designed and built around us is an extension of our imaginations and is only possible because of our creativity. Creativity has played a powerful role in human progress—now imagine what the outcomes would be if we tapped into every young mind’s creative potential.

The Need for a Radical Overhaul
What is clear from the recommendations of Aoun and many other leading thinkers in this space is that an effective 21st-century education system is radically different from the traditional systems we currently have in place. There is a dramatic contrast between these future-oriented frameworks and the way we’ve structured our traditional, industrial-era and cookie-cutter-style education systems.

It’s time for a change, and incremental changes or subtle improvements are no longer enough. What we need to see are more moonshots and disruption in the education sector. In a world of exponential growth and accelerating change, it is never too soon for a much-needed dramatic overhaul.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots

#432249 New Malicious AI Report Outlines Biggest ...

Everyone’s talking about deep fakes: audio-visual imitations of people, generated by increasingly powerful neural networks, that will soon be indistinguishable from the real thing. Politicians are regularly laid low by scandals that arise from audio-visual recordings. Try watching the footage that could be created of Barack Obama from his speeches, and the Lyrebird impersonations. You could easily, today or in the very near future, create a forgery that might be indistinguishable from the real thing. What would that do to politics?

Once the internet is flooded with plausible-seeming tapes and recordings of this sort, how are we going to decide what’s real and what isn’t? Democracy, and our ability to counteract threats, is already threatened by a lack of agreement on the facts. Once you can’t believe the evidence of your senses anymore, we’re in serious trouble. Ultimately, you can dream up all kinds of utterly terrifying possibilities for these deep fakes, from fake news to blackmail.

How to solve the problem? Some have suggested that media websites like Facebook or Twitter should carry software that probes every video to see if it’s a deep fake or not and labels the fakes. But this will prove computationally intensive. Plus, imagine a case where we have such a system, and a fake is “verified as real” by news media algorithms that have been fooled by clever hackers.

The other alternative is even more dystopian: you can prove something isn’t true simply by always having an alibi. Lawfare describes a “solution” where those concerned about deep fakes have all of their movements and interactions recorded. So to avoid being blackmailed or having your reputation ruined, you just consent to some company engaging in 24/7 surveillance of everything you say or do and having total power over that information. What could possibly go wrong?

The point is, in the same way that you don’t need human-level, general AI or humanoid robotics to create systems that can cause disruption in the world of work, you also don’t need a general intelligence to threaten security and wreak havoc on society. Andrew Ng, AI researcher, says that worrying about the risks from superintelligent AI is like “worrying about overpopulation on Mars.” There are clearly risks that arise even from the simple algorithms we have today.

The looming issue of deep fakes is just one of the threats considered by the new malicious AI report, which has co-authors from the Future of Humanity Institute and the Centre for the Study of Existential Risk (among other organizations.) They limit their focus to the technologies of the next five years.

Some of the concerns the report explores are enhancements to familiar threats.

Automated hacking can get better, smarter, and algorithms can adapt to changing security protocols. “Phishing emails,” where people are scammed by impersonating someone they trust or an official organization, could be generated en masse and made more realistic by scraping data from social media. Standard phishing works by sending such a great volume of emails that even a very low success rate can be profitable. Spear phishing aims at specific targets by impersonating family members, but can be labor intensive. If AI algorithms enable every phishing scam to become sharper in this way, more people are going to get gouged.

Then there are novel threats that come from our own increasing use of and dependence on artificial intelligence to make decisions.

These algorithms may be smart in some ways, but as any human knows, computers are utterly lacking in common sense; they can be fooled. A rather scary application is adversarial examples. Machine learning algorithms are often used for image recognition. But it’s possible, if you know a little about how the algorithm is structured, to construct the perfect level of noise to add to an image, and fool the machine. Two images can be almost completely indistinguishable to the human eye. But by adding some cleverly-calculated noise, the hackers can fool the algorithm into thinking an image of a panda is really an image of a gibbon (in the OpenAI example). Research conducted by OpenAI demonstrates that you can fool algorithms even by printing out examples on stickers.

Now imagine that instead of tricking a computer into thinking that a panda is actually a gibbon, you fool it into thinking that a stop sign isn’t there, or that the back of someone’s car is really a nice open stretch of road. In the adversarial example case, the images are almost indistinguishable to humans. By the time anyone notices the road sign has been “hacked,” it could already be too late.

As the OpenAI foundation freely admits, worrying about whether we’d be able to tame a superintelligent AI is a hard problem. It looks all the more difficult when you realize some of our best algorithms can be fooled by stickers; even “modern simple algorithms can behave in ways we do not intend.”

There are ways around this approach.

Adversarial training can generate lots of adversarial examples and explicitly train the algorithm not to be fooled by them—but it’s costly in terms of time and computation, and puts you in an arms race with hackers. Many strategies for defending against adversarial examples haven’t proved adaptive enough; correcting against vulnerabilities one at a time is too slow. Moreover, it demonstrates a point that can be lost in the AI hype: algorithms can be fooled in ways we didn’t anticipate. If we don’t learn about these vulnerabilities until the algorithms are everywhere, serious disruption can occur. And no matter how careful you are, some vulnerabilities are likely to remain to be exploited, even if it takes years to find them.

Just look at the Meltdown and Spectre vulnerabilities, which weren’t widely known about for more than 20 years but could enable hackers to steal personal information. Ultimately, the more blind faith we put into algorithms and computers—without understanding the opaque inner mechanics of how they work—the more vulnerable we will be to these forms of attack. And, as China dreams of using AI to predict crimes and enhance the police force, the potential for unjust arrests can only increase.

This is before you get into the truly nightmarish territory of “killer robots”—not the Terminator, but instead autonomous or consumer drones which could potentially be weaponized by bad actors and used to conduct attacks remotely. Some reports have indicated that terrorist organizations are already trying to do this.

As with any form of technology, new powers for humanity come with new risks. And, as with any form of technology, closing Pandora’s box will prove very difficult.

Somewhere between the excessively hyped prospects of AI that will do everything for us and AI that will destroy the world lies reality: a complex, ever-changing set of risks and rewards. The writers of the malicious AI report note that one of their key motivations is ensuring that the benefits of new technology can be delivered to people as quickly, but as safely, as possible. In the rush to exploit the potential for algorithms and create 21st-century infrastructure, we must ensure we’re not building in new dangers.

Image Credit: lolloj / Shutterstock.com Continue reading

Posted in Human Robots

#432193 Are ‘You’ Just Inside Your Skin or ...

In November 2017, a gunman entered a church in Sutherland Springs in Texas, where he killed 26 people and wounded 20 others. He escaped in his car, with police and residents in hot pursuit, before losing control of the vehicle and flipping it into a ditch. When the police got to the car, he was dead. The episode is horrifying enough without its unsettling epilogue. In the course of their investigations, the FBI reportedly pressed the gunman’s finger to the fingerprint-recognition feature on his iPhone in an attempt to unlock it. Regardless of who’s affected, it’s disquieting to think of the police using a corpse to break into someone’s digital afterlife.

Most democratic constitutions shield us from unwanted intrusions into our brains and bodies. They also enshrine our entitlement to freedom of thought and mental privacy. That’s why neurochemical drugs that interfere with cognitive functioning can’t be administered against a person’s will unless there’s a clear medical justification. Similarly, according to scholarly opinion, law-enforcement officials can’t compel someone to take a lie-detector test, because that would be an invasion of privacy and a violation of the right to remain silent.

But in the present era of ubiquitous technology, philosophers are beginning to ask whether biological anatomy really captures the entirety of who we are. Given the role they play in our lives, do our devices deserve the same protections as our brains and bodies?

After all, your smartphone is much more than just a phone. It can tell a more intimate story about you than your best friend. No other piece of hardware in history, not even your brain, contains the quality or quantity of information held on your phone: it ‘knows’ whom you speak to, when you speak to them, what you said, where you have been, your purchases, photos, biometric data, even your notes to yourself—and all this dating back years.

In 2014, the United States Supreme Court used this observation to justify the decision that police must obtain a warrant before rummaging through our smartphones. These devices “are now such a pervasive and insistent part of daily life that the proverbial visitor from Mars might conclude they were an important feature of human anatomy,” as Chief Justice John Roberts observed in his written opinion.

The Chief Justice probably wasn’t making a metaphysical point—but the philosophers Andy Clark and David Chalmers were when they argued in “The Extended Mind” (1998) that technology is actually part of us. According to traditional cognitive science, “thinking” is a process of symbol manipulation or neural computation, which gets carried out by the brain. Clark and Chalmers broadly accept this computational theory of mind, but claim that tools can become seamlessly integrated into how we think. Objects such as smartphones or notepads are often just as functionally essential to our cognition as the synapses firing in our heads. They augment and extend our minds by increasing our cognitive power and freeing up internal resources.

If accepted, the extended mind thesis threatens widespread cultural assumptions about the inviolate nature of thought, which sits at the heart of most legal and social norms. As the US Supreme Court declared in 1942: “freedom to think is absolute of its own nature; the most tyrannical government is powerless to control the inward workings of the mind.” This view has its origins in thinkers such as John Locke and René Descartes, who argued that the human soul is locked in a physical body, but that our thoughts exist in an immaterial world, inaccessible to other people. One’s inner life thus needs protecting only when it is externalized, such as through speech. Many researchers in cognitive science still cling to this Cartesian conception—only, now, the private realm of thought coincides with activity in the brain.

But today’s legal institutions are straining against this narrow concept of the mind. They are trying to come to grips with how technology is changing what it means to be human, and to devise new normative boundaries to cope with this reality. Justice Roberts might not have known about the idea of the extended mind, but it supports his wry observation that smartphones have become part of our body. If our minds now encompass our phones, we are essentially cyborgs: part-biology, part-technology. Given how our smartphones have taken over what were once functions of our brains—remembering dates, phone numbers, addresses—perhaps the data they contain should be treated on a par with the information we hold in our heads. So if the law aims to protect mental privacy, its boundaries would need to be pushed outwards to give our cyborg anatomy the same protections as our brains.

This line of reasoning leads to some potentially radical conclusions. Some philosophers have argued that when we die, our digital devices should be handled as remains: if your smartphone is a part of who you are, then perhaps it should be treated more like your corpse than your couch. Similarly, one might argue that trashing someone’s smartphone should be seen as a form of “extended” assault, equivalent to a blow to the head, rather than just destruction of property. If your memories are erased because someone attacks you with a club, a court would have no trouble characterizing the episode as a violent incident. So if someone breaks your smartphone and wipes its contents, perhaps the perpetrator should be punished as they would be if they had caused a head trauma.

The extended mind thesis also challenges the law’s role in protecting both the content and the means of thought—that is, shielding what and how we think from undue influence. Regulation bars non-consensual interference in our neurochemistry (for example, through drugs), because that meddles with the contents of our mind. But if cognition encompasses devices, then arguably they should be subject to the same prohibitions. Perhaps some of the techniques that advertisers use to hijack our attention online, to nudge our decision-making or manipulate search results, should count as intrusions on our cognitive process. Similarly, in areas where the law protects the means of thought, it might need to guarantee access to tools such as smartphones—in the same way that freedom of expression protects people’s right not only to write or speak, but also to use computers and disseminate speech over the internet.

The courts are still some way from arriving at such decisions. Besides the headline-making cases of mass shooters, there are thousands of instances each year in which police authorities try to get access to encrypted devices. Although the Fifth Amendment to the US Constitution protects individuals’ right to remain silent (and therefore not give up a passcode), judges in several states have ruled that police can forcibly use fingerprints to unlock a user’s phone. (With the new facial-recognition feature on the iPhone X, police might only need to get an unwitting user to look at her phone.) These decisions reflect the traditional concept that the rights and freedoms of an individual end at the skin.

But the concept of personal rights and freedoms that guides our legal institutions is outdated. It is built on a model of a free individual who enjoys an untouchable inner life. Now, though, our thoughts can be invaded before they have even been developed—and in a way, perhaps this is nothing new. The Nobel Prize-winning physicist Richard Feynman used to say that he thought with his notebook. Without a pen and pencil, a great deal of complex reflection and analysis would never have been possible. If the extended mind view is right, then even simple technologies such as these would merit recognition and protection as a part of the essential toolkit of the mind.This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit: Sergii Tverdokhlibov / Shutterstock.com Continue reading

Posted in Human Robots