Tag Archives: come

#433758 DeepMind’s New Research Plan to Make ...

Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.

AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.

That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.

In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.

A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.

Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.

The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.

Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.

Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.

And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.

The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.

The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.

Image Credit: cono0430 / Shutterstock.com Continue reading

Posted in Human Robots

#433748 Could Tech Make Government As We Know It ...

Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.

At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.

In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.

Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.

In this article, we will cover three key trends:

Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency

Let’s dive in.

Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.

Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.

Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.

With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.

Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.

Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.

But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.

After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.

The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.

We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.

And what better to accelerate digital governance than AI?

Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.

Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.

As AI infuses government services, emerging applications have caught my eye:

Smart Borders and Checkpoints

With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.

Policing and Security

Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.

Smart Courts

AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?

Enter the blockchain.

Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.

As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.

First, blockchain will be a boon for regulatory compliance.

As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.

Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.

Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.

But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.

Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.

Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.

Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.

Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.

But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.

Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.

One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.

In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?

The possibilities are endless, and only we can shape them.

Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: ArtisticPhoto / Shutterstock.com Continue reading

Posted in Human Robots

#433738 How AI is Beating Humanity at Its Own ...

There’s a lot of concern surrounding artificial intelligence (which is often known as AI). Some people are worried it could take on jobs humans might have otherwise done, and no one really knows how the technology could develop in years to come – the progress it’s made already has been astonishing. But there are also …

The post How AI is Beating Humanity at Its Own Game appeared first on TFOT. Continue reading

Posted in Human Robots

#433725 This Week’s Awesome Stories From ...

ROBOTICS
The Demise of Rethink Robotics Shows How Hard It Is to Make Machines Truly Smart
Will Knight | MIT Technology Review
“There’s growing interest in using recent advances in AI to make industrial robots a lot smarter and more useful. …But look carefully and you’ll see that these technologies are at a very early stage, and that deploying them commercially could prove extremely challenging. The demise of Rethink doesn’t mean industrial robotics isn’t flourishing, or that AI-driven advances won’t come about. But it shows just how hard doing real innovation in robotics can be.”

SCIENCE
The Human Cell Atlas Is Biologists’ Latest Grand Project
Megan Molteni | Wired
“Dubbed the Human Cell Atlas, the project intends to catalog all of the estimated 37 trillion cells that make up a human body. …By decoding the genes active in single cells, pegging different cell types to a specific address in the body, and tracing the molecular circuits between them, participating researchers plan to create a more comprehensive map of human biology than has ever existed before.”

TRANSPORTATION
US Will Rewrite Safety Rules to Permit Fully Driverless Cars on Public Roads
Andrew J. Hawkins | The Verge
“Under current US safety rules, a motor vehicle must have traditional controls, like a steering wheel, mirrors, and foot pedals, before it is allowed to operate on public roads. But that could all change under a new plan released on Thursday by the Department of Transportation that’s intended to open the floodgates for fully driverless cars.”

ARTIFICIAL INTELLIGENCE
When an AI Goes Full Jack Kerouac
Brian Merchant | The Atlantic
“By the end of the four-day trip, receipts emblazoned with artificially intelligent prose would cover the floor of the car. …it is a hallucinatory, oddly illuminating account of a bot’s life on the interstate; the Electric Kool-Aid Acid Test meets Google Street View, narrated by Siri.”

FUTURE OF FOOD
New Autonomous Farm Wants to Produce Food Without Human Workers
Erin Winick | MIT Technology Review
“As the firm’s cofounder Brandon Alexander puts it: ‘We are a farm and will always be a farm.’ But it’s no ordinary farm. For starters, the company’s 15 human employees share their work space with robots who quietly go about the business of tending rows and rows of leafy greens.”

Image Credit: Kotenko Olaksandr / Shutterstock.com Continue reading

Posted in Human Robots

#433696 3 Big Ways Tech Is Disrupting Global ...

Disruptive business models are often powered by alternative financing. In Part 1 of this series, I discussed how mobile is redefining money and banking and shared some of the dramatic transformations in the global remittance infrastructure.

In this article, we’ll discuss:

Peer-to-peer lending
AI financial advisors and robo traders
Seamless Transactions

Let’s dive right back in…

Decentralized Lending = Democratized Access to Finances
Peer-to-peer (P2P) lending is an age-old practice, traditionally with high risk and extreme locality. Now, the P2P funding model is being digitized and delocalized, bringing lending online and across borders.

Zopa, the first official crowdlending platform, arrived in the United Kingdom in 2004. Since then, the consumer crowdlending platform has facilitated lending of over 3 billion euros ($3.5 billion USD) of loans.

Person-to-business crowdlending took off, again in the U.K., in 2005 with Funding Circle, now with over 5 billion euros (~5.8 billion USD) of capital loaned to small businesses around the world.

Crowdlending next took off in the US in 2006, with platforms like Prosper and Lending Club. The US crowdlending industry has boomed to $21 billion in loans, across 515,000 loans.

Let’s take a step back… to a time before banks, when lending took place between trusted neighbors in small villages across the globe. Lending started as peer-to-peer transactions.

As villages turned into towns, towns turned into cities, and cities turned into sprawling metropolises, neighborly trust and the ability to communicate across urban landscapes broke down. That’s where banks and other financial institutions came into play—to add trust back into the lending equation.

With crowdlending, we are evidently returning to this pre-centralized-banking model of loans, and moving away from cumbersome intermediaries (e.g. high fees, regulations, and extra complexity).

Fueled by the permeation of the internet, P2P lending took on a new form as ‘crowdlending’ in the early 2000s. Now, as blockchain and artificial intelligence arrive on the digital scene, P2P lending platforms are being overhauled with transparency, accountability, reliability, and immutability.

Artificial Intelligence Micro Lending & Credit Scores
We are beginning to augment our quantitative decision-making with neural networks processing borrowers’ financial data to determine their financial ‘fate’ (or, as some call it, your credit score). Companies like Smart Finance Group (backed by Kai Fu Lee and Sinovation Ventures) are using artificial intelligence to minimize default rates for tens of millions of microloans.

Smart Finance is fueled by users’ personal data, particularly smartphone data and usage behavior. Users are required to give Smart Finance access to their smartphone data, so that Smart Finance’s artificial intelligence engine can generate a credit score from the personal information.

The benefits of this AI-powered lending platform do not stop at increased loan payback rates; there’s a massive speed increase as well. Smart Finance loans are frequently approved in under eight seconds. As we’ve seen with other artificial intelligence disruptions, data is the new gold.

Digitizing access to P2P loans paves the way for billions of people currently without access to banking to leapfrog the centralized banking system, just as Africa bypassed landline phones and went straight to mobile. Leapfrogging centralized banking and the credit system is exactly what Smart Finance has done for hundreds of millions of people in China.

Blockchain-Backed Crowdlending
As artificial intelligence accesses even the most mundane mobile browsing data to assign credit scores, blockchain technologies, particularly immutable ledgers and smart contracts, are massive disruptors to the archaic banking system, building additional trust and transparency on top of current P2P lending models.

Immutable ledgers provide the necessary transparency for accurate credit and loan defaulting history. Smart contracts executed on these immutable ledgers bring the critical ability to digitally replace cumbersome, expensive third parties (like banks), allowing individual borrowers or businesses to directly connect with willing lenders.

Two of the leading blockchain platforms for P2P lending are ETHLend and SALT Lending.

ETHLend is an Ethereum-based decentralized application aiming to bring transparency and trust to P2P lending through Ethereum network smart contracts.

Secure Automated Lending Technology (SALT) allows cryptocurrency asset holders to use their digital assets as collateral for cash loans, without the need to liquidate their holdings, giving rise to a digital-asset-backed lending market.

While blockchain poses a threat to many of the large, centralized banking institutions, some are taking advantage of the new technology to optimize their internal lending, credit scoring, and collateral operations.

In March 2018, ING and Credit Suisse successfully exchanged 25 million euros using HQLA-X, a blockchain-based collateral lending platform.

HQLA-X runs on the R3 Corda blockchain, a platform designed specifically to help heritage financial and commerce institutions migrate away from their inefficient legacy financial infrastructure.

Blockchain and tokenization are going through their own fintech and regulation shakeup right now. In a future blog, I’ll discuss the various efforts to more readily assure smart contracts, and the disruptive business model of security tokens and the US Securities and Exchange Commission.

Parallels to the Global Abundance of Capital
The abundance of capital being created by the advent of P2P loans closely relates to the unprecedented global abundance of capital.

Initial coin offerings (ICOs) and crowdfunding are taking a strong stand in disrupting the $164 billion venture capital market. The total amount invested in ICOs has risen from $6.6 billion in 2017 to $7.15 billion USD in the first half of 2018. Crowdfunding helped projects raise more than $34 billion in 2017, with experts projecting that global crowdfunding investments will reach $300 billion by 2025.

In the last year alone, using ICOs, over a dozen projects have raised hundreds of millions of dollars in mere hours. Take Filecoin, for example, which raised $257 million  in only 30 days; its first $135 million was raised in the first hour. Similarly, the Dragon Coin project (which itself is revolutionizing remittance in high-stakes casinos around the world) raised $320 million in its 30-day public ICO.

Some Important Takeaways…

Technology-backed fundraising and financial services are disrupting the world’s largest financial institutions. Anyone, anywhere, at anytime will be able to access the capital they need to pursue their idea.

The speed at which we can go from “I’ve got an idea” to “I run a billion-dollar company” is moving faster than ever.

Following Ray Kurzweil’s Law of Accelerating Returns, the rapid decrease in time to access capital is intimately linked (and greatly dependent on) a financial infrastructure (technology, institutions, platforms, and policies) that can adapt and evolve just as rapidly.

This new abundance of capital requires financial decision-making with ever-higher market prediction precision. That’s exactly where artificial intelligence is already playing a massive role.

Artificial Intelligence, Robo Traders, and Financial Advisors
On May 6, 2010, the Dow Jones Industrial Average suddenly collapsed by 998.5 points (equal to 8 percent, or $1 trillion). The crash lasted over 35 minutes and is now known as the ‘Flash Crash’. While no one knows the specific reason for this 2010 stock market anomaly, experts widely agree that the Flash Crash had to do with algorithmic trading.

With the ability to have instant, trillion-dollar market impacts, algorithmic trading and artificial intelligence are undoubtedly ingrained in how financial markets operate.

In 2017, CNBC.com estimated that 90 percent of daily trading volume in stock trading is done by machine algorithms, and only 10 percent is carried out directly by humans.

Artificial intelligence and financial management algorithms are not only available to top Wall Street players.

Robo-advisor financial management apps, like Wealthfront and Betterment, are rapidly permeating the global market. Wealthfront currently has $9.5 billion in assets under management, and Betterment has $10 billion.

Artificial intelligent financial agents are already helping financial institutions protect your money and fight fraud. A prime application for machine learning is in detecting anomalies in your spending and transaction habits, and flagging potentially fraudulent transactions.

As artificial intelligence continues to exponentially increase in power and capabilities, increasingly powerful trading and financial management bots will come online, finding massive new and previously lost streams of wealth.

How else are artificial intelligence and automation transforming finance?

Disruptive Remittance and Seamless Transactions
When was the last time you paid in cash at a toll booth? How about for a taxi ride?

EZ-Pass, the electronic tolling company implemented extensively on the East Coast, has done wonders to reduce traffic congestion and increase traffic flow.

Driving down I-95 on the East Coast of the United States, drivers rarely notice their financial transaction with the state’s tolling agencies. The transactions are seamless.

The Uber app enables me to travel without my wallet. I can forget about payment on my trip, free up my mental bandwidth and time for higher-priority tasks. The entire process is digitized and, by extension, automated and integrated into Uber’s platform (Note: This incredible convenience many times causes me to accidentally walk out of taxi cabs without paying!).

In January 2018, we saw the success of the first cutting-edge, AI-powered Amazon Go store open in Seattle, Washington. The store marked a new era in remittance and transactions. Gone are the days of carrying credit cards and cash, and gone are the cash registers. And now, on the heals of these early ‘beta-tests’, Amazon is considering opening as many as 3,000 of these cashierless stores by 2023.

Amazon Go stores use AI algorithms that watch various video feeds (from advanced cameras) throughout the store to identify who picks up groceries, exactly what products they select, and how much to charge that person when they walk out of the store. It’s a grab and go experience.

Let’s extrapolate the notion of seamless, integrated payment systems from Amazon Go and Uber’s removal of post-ride payment to the rest of our day-to-day experience.

Imagine this near future:

As you near the front door of your home, your AI assistant summons a self-driving Uber that takes you to the Hyperloop station (after all, you work in L.A. but live in San Francisco).

At the station, you board your pod, without noticing that your ticket purchase was settled via a wireless payment checkpoint.

After work, you stop at the Amazon Go and pick up dinner. Your virtual AI assistant passes your Amazon account information to the store’s payment checkpoint, as the store’s cameras and sensors track you, your cart and charge you auto-magically.

At home, unbeknownst to you, your AI has already restocked your fridge and pantry with whatever items you failed to pick up at the Amazon Go.

Once we remove the actively transacting aspect of finance, what else becomes possible?

Top Conclusions
Extraordinary transformations are happening in the finance world. We’ve only scratched the surface of the fintech revolution. All of these transformative financial technologies require high-fidelity assurance, robust insurance, and a mechanism for storing value.

I’ll dive into each of these other facets of financial services in future articles.

For now, thanks to coming global communication networks being deployed on 5G, Alphabet’s LUNE, SpaceX’s Starlink and OneWeb, by 2024, nearly all 8 billion people on Earth will be online.

Once connected, these new minds, entrepreneurs, and customers need access to money and financial services to meaningfully participate in the world economy.

By connecting lenders and borrowers around the globe, decentralized lending drives down global interest rates, increases global financial market participation, and enables economic opportunity to the billions of people who are about to come online.

We’re living in the most abundant time in human history, and fintech is just getting started.

Join Me
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Novikov Aleksey / Shutterstock.com Continue reading

Posted in Human Robots