Tag Archives: come

#431058 How to Make Your First Chatbot With the ...

You’re probably wondering what Game of Thrones has to do with chatbots and artificial intelligence. Before I explain this weird connection, I need to warn you that this article may contain some serious spoilers. Continue with your reading only if you are a passionate GoT follower, who watches new episodes immediately after they come out.
Why are chatbots so important anyway?
According to the study “When Will AI Exceed Human Performance?,” researchers believe there is a 50% chance artificial intelligence could take over all human jobs by around the year 2060. This technology has already replaced dozens of customer service and sales positions and helped businesses make substantial savings.
Apart from the obvious business advantages, chatbot creation can be fun. You can create an artificial personality with a strong attitude and a unique set of traits and flaws. It’s like creating a new character for your favorite TV show. That’s why I decided to explain the most important elements of the chatbot creation process by using the TV characters we all know and love (or hate).
Why Game of Thrones?
Game of Thrones is the most popular TV show in the world. More than 10 million viewers watched the seventh season premiere, and you have probably seen internet users fanatically discussing the series’ characters, storyline, and possible endings.
Apart from writing about chatbots, I’m also a GoT fanatic, and I will base this chatbot on one of the characters from my favorite series. But before you find out the name of my bot, you should read a few lines about incredible free tools that allow us to build chatbots without coding.
Are chatbots expensive?
Today, you can create a chatbot even if you don’t know how to code. Most chatbot building platforms offer at least one free plan that allows you to use basic functionalities, create your bot, deploy it to Facebook Messenger, and analyze its performance. Free plans usually allow your bot to talk to a limited number of users.
Why should you personalize your bot?
Every platform will ask you to write a bot’s name before you start designing conversations. You will also be able to add the bot’s photograph and bio. Personalizing your bot is the only way to ensure that you will stick to the same personality and storyline throughout the building process. Users often see chatbots as people, and by giving your bot an identity, you will make sure that it doesn’t sound like it has multiple personality disorder.
I think connecting my chatbot with a GoT character will help readers understand the process of chatbot creation.
And the name of our GoT chatbot is…
…Cersei. She is mean, pragmatic, and fearless and she would do anything to stay on the Iron Throne. Many people would rather hang out with Daenerys or Jon Snow. These characters are honest, noble and good-hearted, which means their actions are often predictable.
Cersei, on the other hand, is the queen of intrigues. As the meanest and the most vengeful character in the series, she has an evil plan for everybody who steps on her toes. While viewers can easily guess where Jon and Daenerys stand, there are dozens of questions they would like to ask Cersei. But before we start talking to our bot, we need to build her personality by using the most basic elements of chatbot interaction.
Choosing the bot’s name on Botsify.
Welcome / Greeting Message
The welcome message is the greeting Cersei says to every commoner who clicks on the ‘start conversation’ button. She is not a welcoming person (ask Sansa), except if you are a banker from Braavos. Her introductory message may sound something like this:
“Dear {{user_full_name}}, My name is Cersei of the House Lannister, the First of Her Name, Queen of the Andals and the First Men, Protector of the Seven Kingdoms. You can ask me questions, and I will answer them. If the question is not worth answering, I will redirect you to Ser Gregor Clegane, who will give you a step-by-step course on how to talk to the Queen of Westeros.”
Creating the welcome message on Chatfuel
Default Message / Answer
In the bot game, users, bots, and their creators often need to learn from failed attempts and mistakes. The default message is the text Cersei will send whenever you ask her a question she doesn’t understand. Knowing Cersei, it would sound something like this:
“Ser Gregor, please escort {{user_full_name}} to the dungeon.”
Creating default message on Botsify
Menu
To avoid calling out the Mountain every time someone asks her a question, Cersei might give you a few (safe) options to choose. The best way to do this is by using a menu function. We can classify the questions people want to ask Cersei in several different categories:

Iron Throne
Relationship with Jaime — OK, this isn’t a “safe option,” get ready to get close and personal with Sir Gregor Clegane.
War plans
Euron Greyjoy

After users choose a menu item, Cersei can give them a default response on the topic or set up a plot that will make their lives miserable. Knowing Cersei, she will probably go for the second option.
Adding chatbot menu on Botsify
Stories / Blocks
This feature allows us to build a longer Cersei-to-user interaction. The structure of stories and blocks is different on every chatbot platform, but most of them use keywords and phrases for finding out the user’s intention.

Keywords — where the bot recognizes a certain keyword within the user’s reply. Users who have chosen the ‘war plans’ option might ask Cersei how is she planning to defeat Daenerys’s dragons. We can add ‘dragon’ and ‘dragons’ as keywords, and connect them with an answer that will sound something like this:

“Dragons are not invulnerable as you may think. Maester Qyburn is developing a weapon that will bring them down for good!”
Adding keywords on Chatfuel
People may also ask her about White Walkers. Do you plan to join Daenerys and Jon Snow in a fight against White Walkers? After we add ‘White Walker’ and ‘White Walkers’ on the keyword list, Cersei will answer:
“White Walkers? Do you think the Queen of Westeros has enough free time to think about creatures from fairy tales and legends?”
Adding Keywords on Botsify

Phrases — are more complex syntaxes that the bot can be trained to recognize. Many people would like to ask Cersei if she’s going to marry Euron Greyjoy after the war ends. We can add ‘Euron’ as a keyword, but then we won’t be sure what answer the user is expecting. Instead, we can use the phrase ‘(Will you) marry Euron Greyjoy (after the war?)’. Just to be sure, we should also add a few alternative phrases like ‘(Do you plan on) marrying Euron Greyjoy (after the war),’ ‘(Will you) end up with Euron Greyjoy (after the war?)’, ‘(Will) Euron Greyjoy be the new King?’ etc. Cersei would probably answer this inquiry in her style:

“Of course not, Euron is a useful idiot. I will use his fleet and send him back to the Iron Islands, where he belongs.”
Adding phrases on Botsify
Forms
We have already asked Cersei several questions, and now she would like to ask us something. She can do so by using the form/user input feature. Most tools allow us to add a question and the criteria for checking the users’ answer. If the user provides us the answer that is compliant to the predefined form (like email address, phone number, or a ZIP code), the bot will identify and extract the answer. If the answer doesn’t fit into the predefined criteria, the bot will notify the user and ask him/her to try again.
If Cersei would ask you a question, she would probably want to know your address so she could send her guards to fill your basement with barrels of wildfire.
Creating forms on Botsify
Templates
If you have problems building your first chatbot, templates can help you create the basic conversation structure. Unfortunately, not all platforms offer this feature for free. Snatchbot currently has the most comprehensive list of free templates. There you can choose a pre-built layout. The template selection ranges from simple FAQ bots to ones created for a specific industry, like banking, airline, healthcare, or e-commerce.
Choosing templates on Snatchbot
Plugins
Most tools also provide plugins that can be used for making the conversations more meaningful. These plugins allow Cersei to send images, audio and video files. She can unleash her creativity and make you suffer by sending you her favorite GoT execution videos.

With the help of integrations, Cersei can talk to you on Facebook Messenger, Telegram, WeChat, Slack, and many other communication apps. She can also sell her fan gear and ask you for donations by integrating in-bot payments from PayPal accounts. Her sales pitch will probably sound something like this:
“Gold wins wars! Would you rather invest your funds in a member of a respected family, who always pays her debts, or in the chaotic war endeavor of a crazy revolutionary, whose strength lies in three flying lizards? If your pockets are full of gold, you are already on my side. Now you can complete your checkout on PayPal.”
Chatbot building is now easier than ever, and even small businesses are starting to use the incredible benefits of artificial intelligence. If you still don’t believe that chatbots can replace customer service representatives, I suggest you try to develop a bot based on your favorite TV show, movie or book character and talk with him/her for a while. This way, you will be able to understand the concept that stands behind this amazing technology and use it to improve your business.
Now I’m off to talk to Cersei. Maybe she will feed me some Season 8 spoilers.
This article was originally published by Chatbots Magazine. Read the original post here.
Image credits for screenshots in post: Branislav Srdanovic
Banner stock media provided by new_vision_studio / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430868 These 7 Forces Are Changing the World at ...

It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.

“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on These 7 Forces Are Changing the World at ...

#430830 Biocomputers Made From Cells Can Now ...

When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.

Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Biocomputers Made From Cells Can Now ...

#430761 How Robots Are Getting Better at Making ...

The multiverse of science fiction is populated by robots that are indistinguishable from humans. They are usually smarter, faster, and stronger than us. They seem capable of doing any job imaginable, from piloting a starship and battling alien invaders to taking out the trash and cooking a gourmet meal.
The reality, of course, is far from fantasy. Aside from industrial settings, robots have yet to meet The Jetsons. The robots the public are exposed to seem little more than over-sized plastic toys, pre-programmed to perform a set of tasks without the ability to interact meaningfully with their environment or their creators.
To paraphrase PayPal co-founder and tech entrepreneur Peter Thiel, we wanted cool robots, instead we got 140 characters and Flippy the burger bot. But scientists are making progress to empower robots with the ability to see and respond to their surroundings just like humans.
Some of the latest developments in that arena were presented this month at the annual Robotics: Science and Systems Conference in Cambridge, Massachusetts. The papers drilled down into topics that ranged from how to make robots more conversational and help them understand language ambiguities to helping them see and navigate through complex spaces.
Improved Vision
Ben Burchfiel, a graduate student at Duke University, and his thesis advisor George Konidaris, an assistant professor of computer science at Brown University, developed an algorithm to enable machines to see the world more like humans.
In the paper, Burchfiel and Konidaris demonstrate how they can teach robots to identify and possibly manipulate three-dimensional objects even when they might be obscured or sitting in unfamiliar positions, such as a teapot that has been tipped over.
The researchers trained their algorithm by feeding it 3D scans of about 4,000 common household items such as beds, chairs, tables, and even toilets. They then tested its ability to identify about 900 new 3D objects just from a bird’s eye view. The algorithm made the right guess 75 percent of the time versus a success rate of about 50 percent for other computer vision techniques.
In an email interview with Singularity Hub, Burchfiel notes his research is not the first to train machines on 3D object classification. How their approach differs is that they confine the space in which the robot learns to classify the objects.
“Imagine the space of all possible objects,” Burchfiel explains. “That is to say, imagine you had tiny Legos, and I told you [that] you could stick them together any way you wanted, just build me an object. You have a huge number of objects you could make!”
The infinite possibilities could result in an object no human or machine might recognize.
To address that problem, the researchers had their algorithm find a more restricted space that would host the objects it wants to classify. “By working in this restricted space—mathematically we call it a subspace—we greatly simplify our task of classification. It is the finding of this space that sets us apart from previous approaches.”
Following Directions
Meanwhile, a pair of undergraduate students at Brown University figured out a way to teach robots to understand directions better, even at varying degrees of abstraction.
The research, led by Dilip Arumugam and Siddharth Karamcheti, addressed how to train a robot to understand nuances of natural language and then follow instructions correctly and efficiently.
“The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all,” says Arumugam in a press release.
In this project, the young researchers crowdsourced instructions for moving a virtual robot through an online domain. The space consisted of several rooms and a chair, which the robot was told to manipulate from one place to another. The volunteers gave various commands to the robot, ranging from general (“take the chair to the blue room”) to step-by-step instructions.
The researchers then used the database of spoken instructions to teach their system to understand the kinds of words used in different levels of language. The machine learned to not only follow instructions but to recognize the level of abstraction. That was key to kickstart its problem-solving abilities to tackle the job in the most appropriate way.
The research eventually moved from virtual pixels to a real place, using a Roomba-like robot that was able to respond to instructions within one second 90 percent of the time. Conversely, when unable to identify the specificity of the task, it took the robot 20 or more seconds to plan a task about 50 percent of the time.
One application of this new machine-learning technique referenced in the paper is a robot worker in a warehouse setting, but there are many fields that could benefit from a more versatile machine capable of moving seamlessly between small-scale operations and generalized tasks.
“Other areas that could possibly benefit from such a system include things from autonomous vehicles… to assistive robotics, all the way to medical robotics,” says Karamcheti, responding to a question by email from Singularity Hub.
More to Come
These achievements are yet another step toward creating robots that see, listen, and act more like humans. But don’t expect Disney to build a real-life Westworld next to Toon Town anytime soon.
“I think we’re a long way off from human-level communication,” Karamcheti says. “There are so many problems preventing our learning models from getting to that point, from seemingly simple questions like how to deal with words never seen before, to harder, more complicated questions like how to resolve the ambiguities inherent in language, including idiomatic or metaphorical speech.”
Even relatively verbose chatbots can run out of things to say, Karamcheti notes, as the conversation becomes more complex.
The same goes for human vision, according to Burchfiel.
While deep learning techniques have dramatically improved pattern matching—Google can find just about any picture of a cat—there’s more to human eyesight than, well, meets the eye.
“There are two big areas where I think perception has a long way to go: inductive bias and formal reasoning,” Burchfiel says.
The former is essentially all of the contextual knowledge people use to help them reason, he explains. Burchfiel uses the example of a puddle in the street. People are conditioned or biased to assume it’s a puddle of water rather than a patch of glass, for instance.
“This sort of bias is why we see faces in clouds; we have strong inductive bias helping us identify faces,” he says. “While it sounds simple at first, it powers much of what we do. Humans have a very intuitive understanding of what they expect to see, [and] it makes perception much easier.”
Formal reasoning is equally important. A machine can use deep learning, in Burchfiel’s example, to figure out the direction any river flows once it understands that water runs downhill. But it’s not yet capable of applying the sort of human reasoning that would allow us to transfer that knowledge to an alien setting, such as figuring out how water moves through a plumbing system on Mars.
“Much work was done in decades past on this sort of formal reasoning… but we have yet to figure out how to merge it with standard machine-learning methods to create a seamless system that is useful in the actual physical world.”
Robots still have a lot to learn about being human, which should make us feel good that we’re still by far the most complex machines on the planet.
Image Credit: Alex Knight via Unsplash Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on How Robots Are Getting Better at Making ...

#430668 Why Every Leader Needs to Be Obsessed ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Why Every Leader Needs to Be Obsessed ...