Tag Archives: close

#433895 Sci-Fi Movies Are the Secret Weapon That ...

If there’s one line that stands the test of time in Steven Spielberg’s 1993 classic Jurassic Park, it’s probably Jeff Goldblum’s exclamation, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.”

Goldblum’s character, Dr. Ian Malcolm, was warning against the hubris of naively tinkering with dinosaur DNA in an effort to bring these extinct creatures back to life. Twenty-five years on, his words are taking on new relevance as a growing number of scientists and companies are grappling with how to tread the line between “could” and “should” in areas ranging from gene editing and real-world “de-extinction” to human augmentation, artificial intelligence and many others.

Despite growing concerns that powerful emerging technologies could lead to unexpected and wide-ranging consequences, innovators are struggling with how to develop beneficial new products while being socially responsible. Part of the answer could lie in watching more science fiction movies like Jurassic Park.

Hollywood Lessons in Societal Risks
I’ve long been interested in how innovators and others can better understand the increasingly complex landscape around the social risks and benefits associated with emerging technologies. Growing concerns over the impacts of tech on jobs, privacy, security and even the ability of people to live their lives without undue interference highlight the need for new thinking around how to innovate responsibly.

New ideas require creativity and imagination, and a willingness to see the world differently. And this is where science fiction movies can help.

Sci-fi flicks are, of course, notoriously unreliable when it comes to accurately depicting science and technology. But because their plots are often driven by the intertwined relationships between people and technology, they can be remarkably insightful in revealing social factors that affect successful and responsible innovation.

This is clearly seen in Jurassic Park. The movie provides a surprisingly good starting point for thinking about the pros and cons of modern-day genetic engineering and the growing interest in bringing extinct species back from the dead. But it also opens up conversations around the nature of complex systems that involve both people and technology, and the potential dangers of “permissionless” innovation that’s driven by power, wealth and a lack of accountability.

Similar insights emerge from a number of other movies, including Spielberg’s 2002 film “Minority Report”—which presaged a growing capacity for AI-enabled crime prediction and the ethical conundrums it’s raising—as well as the 2014 film Ex Machina.

As with Jurassic Park, Ex Machina centers around a wealthy and unaccountable entrepreneur who is supremely confident in his own abilities. In this case, the technology in question is artificial intelligence.

The movie tells a tale of an egotistical genius who creates a remarkable intelligent machine—but he lacks the awareness to recognize his limitations and the risks of what he’s doing. It also provides a chilling insight into potential dangers of creating machines that know us better than we know ourselves, while not being bound by human norms or values.

The result is a sobering reminder of how, without humility and a good dose of humanity, our innovations can come back to bite us.

The technologies in Jurassic Park, Minority Report, and Ex Machina lie beyond what is currently possible. Yet these films are often close enough to emerging trends that they help reveal the dangers of irresponsible, or simply naive, innovation. This is where these and other science fiction movies can help innovators better understand the social challenges they face and how to navigate them.

Real-World Problems Worked Out On-Screen
In a recent op-ed in the New York Times, journalist Kara Swisher asked, “Who will teach Silicon Valley to be ethical?” Prompted by a growing litany of socially questionable decisions amongst tech companies, Swisher suggests that many of them need to grow up and get serious about ethics. But ethics alone are rarely enough. It’s easy for good intentions to get swamped by fiscal pressures and mired in social realities.

Elon Musk has shown that brilliant tech innovators can take ethical missteps along the way. Image Credit:AP Photo/Chris Carlson
Technology companies increasingly need to find some way to break from business as usual if they are to become more responsible. High-profile cases involving companies like Facebook and Uber as well as Tesla’s Elon Musk have highlighted the social as well as the business dangers of operating without fully understanding the consequences of people-oriented actions.

Many more companies are struggling to create socially beneficial technologies and discovering that, without the necessary insights and tools, they risk blundering about in the dark.

For instance, earlier this year, researchers from Google and DeepMind published details of an artificial intelligence-enabled system that can lip-read far better than people. According to the paper’s authors, the technology has enormous potential to improve the lives of people who have trouble speaking aloud. Yet it doesn’t take much to imagine how this same technology could threaten the privacy and security of millions—especially when coupled with long-range surveillance cameras.

Developing technologies like this in socially responsible ways requires more than good intentions or simply establishing an ethics board. People need a sophisticated understanding of the often complex dynamic between technology and society. And while, as Mozilla’s Mitchell Baker suggests, scientists and technologists engaging with the humanities can be helpful, it’s not enough.

An Easy Way into a Serious Discipline
The “new formulation” of complementary skills Baker says innovators desperately need already exists in a thriving interdisciplinary community focused on socially responsible innovation. My home institution, the School for the Future of Innovation in Society at Arizona State University, is just one part of this.

Experts within this global community are actively exploring ways to translate good ideas into responsible practices. And this includes the need for creative insights into the social landscape around technology innovation, and the imagination to develop novel ways to navigate it.

People love to come together as a movie audience.Image credit: The National Archives UK, CC BY 4.0
Here is where science fiction movies become a powerful tool for guiding innovators, technology leaders and the companies where they work. Their fictional scenarios can reveal potential pitfalls and opportunities that can help steer real-world decisions toward socially beneficial and responsible outcomes, while avoiding unnecessary risks.

And science fiction movies bring people together. By their very nature, these films are social and educational levelers. Look at who’s watching and discussing the latest sci-fi blockbuster, and you’ll often find a diverse cross-section of society. The genre can help build bridges between people who know how science and technology work, and those who know what’s needed to ensure they work for the good of society.

This is the underlying theme in my new book Films from the Future: The Technology and Morality of Sci-Fi Movies. It’s written for anyone who’s curious about emerging trends in technology innovation and how they might potentially affect society. But it’s also written for innovators who want to do the right thing and just don’t know where to start.

Of course, science fiction films alone aren’t enough to ensure socially responsible innovation. But they can help reveal some profound societal challenges facing technology innovators and possible ways to navigate them. And what better way to learn how to innovate responsibly than to invite some friends round, open the popcorn and put on a movie?

It certainly beats being blindsided by risks that, with hindsight, could have been avoided.

Andrew Maynard, Director, Risk Innovation Lab, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Fred Mantel / Shutterstock.com Continue reading

Posted in Human Robots

#433776 Why We Should Stop Conflating Human and ...

It’s common to hear phrases like ‘machine learning’ and ‘artificial intelligence’ and believe that somehow, someone has managed to replicate a human mind inside a computer. This, of course, is untrue—but part of the reason this idea is so pervasive is because the metaphor of human learning and intelligence has been quite useful in explaining machine learning and artificial intelligence.

Indeed, some AI researchers maintain a close link with the neuroscience community, and inspiration runs in both directions. But the metaphor can be a hindrance to people trying to explain machine learning to those less familiar with it. One of the biggest risks of conflating human and machine intelligence is that we start to hand over too much agency to machines. For those of us working with software, it’s essential that we remember the agency is human—it’s humans who build these systems, after all.

It’s worth unpacking the key differences between machine and human intelligence. While there are certainly similarities, it’s by looking at what makes them different that we can better grasp how artificial intelligence works, and how we can build and use it effectively.

Neural Networks
Central to the metaphor that links human and machine learning is the concept of a neural network. The biggest difference between a human brain and an artificial neural net is the sheer scale of the brain’s neural network. What’s crucial is that it’s not simply the number of neurons in the brain (which reach into the billions), but more precisely, the mind-boggling number of connections between them.

But the issue runs deeper than questions of scale. The human brain is qualitatively different from an artificial neural network for two other important reasons: the connections that power it are analogue, not digital, and the neurons themselves aren’t uniform (as they are in an artificial neural network).

This is why the brain is such a complex thing. Even the most complex artificial neural network, while often difficult to interpret and unpack, has an underlying architecture and principles guiding it (this is what we’re trying to do, so let’s construct the network like this…).

Intricate as they may be, neural networks in AIs are engineered with a specific outcome in mind. The human mind, however, doesn’t have the same degree of intentionality in its engineering. Yes, it should help us do all the things we need to do to stay alive, but it also allows us to think critically and creatively in a way that doesn’t need to be programmed.

The Beautiful Simplicity of AI
The fact that artificial intelligence systems are so much simpler than the human brain is, ironically, what enables AIs to deal with far greater computational complexity than we can.

Artificial neural networks can hold much more information and data than the human brain, largely due to the type of data that is stored and processed in a neural network. It is discrete and specific, like an entry on an excel spreadsheet.

In the human brain, data doesn’t have this same discrete quality. So while an artificial neural network can process very specific data at an incredible scale, it isn’t able to process information in the rich and multidimensional manner a human brain can. This is the key difference between an engineered system and the human mind.

Despite years of research, the human mind still remains somewhat opaque. This is because the analog synaptic connections between neurons are almost impenetrable to the digital connections within an artificial neural network.

Speed and Scale
Consider what this means in practice. The relative simplicity of an AI allows it to do a very complex task very well, and very quickly. A human brain simply can’t process data at scale and speed in the way AIs need to if they’re, say, translating speech to text, or processing a huge set of oncology reports.

Essential to the way AI works in both these contexts is that it breaks data and information down into tiny constituent parts. For example, it could break sounds down into phonetic text, which could then be translated into full sentences, or break images into pieces to understand the rules of how a huge set of them is composed.

Humans often do a similar thing, and this is the point at which machine learning is most like human learning; like algorithms, humans break data or information into smaller chunks in order to process it.

But there’s a reason for this similarity. This breakdown process is engineered into every neural network by a human engineer. What’s more, the way this process is designed will be down to the problem at hand. How an artificial intelligence system breaks down a data set is its own way of ‘understanding’ it.

Even while running a highly complex algorithm unsupervised, the parameters of how an AI learns—how it breaks data down in order to process it—are always set from the start.

Human Intelligence: Defining Problems
Human intelligence doesn’t have this set of limitations, which is what makes us so much more effective at problem-solving. It’s the human ability to ‘create’ problems that makes us so good at solving them. There’s an element of contextual understanding and decision-making in the way humans approach problems.

AIs might be able to unpack problems or find new ways into them, but they can’t define the problem they’re trying to solve.

Algorithmic insensitivity has come into focus in recent years, with an increasing number of scandals around bias in AI systems. Of course, this is caused by the biases of those making the algorithms, but underlines the point that algorithmic biases can only be identified by human intelligence.

Human and Artificial Intelligence Should Complement Each Other
We must remember that artificial intelligence and machine learning aren’t simply things that ‘exist’ that we can no longer control. They are built, engineered, and designed by us. This mindset puts us in control of the future, and makes algorithms even more elegant and remarkable.

Image Credit: Liu zishan/Shutterstock Continue reading

Posted in Human Robots

#433486 This AI Predicts Obesity ...

A research team at the University of Washington has trained an artificial intelligence system to spot obesity—all the way from space. The system used a convolutional neural network (CNN) to analyze 150,000 satellite images and look for correlations between the physical makeup of a neighborhood and the prevalence of obesity.

The team’s results, presented in JAMA Network Open, showed that features of a given neighborhood could explain close to two-thirds (64.8 percent) of the variance in obesity. Researchers found that analyzing satellite data could help increase understanding of the link between peoples’ environment and obesity prevalence. The next step would be to make corresponding structural changes in the way neighborhoods are built to encourage physical activity and better health.

Training AI to Spot Obesity
Convolutional neural networks (CNNs) are particularly adept at image analysis, object recognition, and identifying special hierarchies in large datasets.

Prior to analyzing 150,000 high-resolution satellite images of Bellevue, Seattle, Tacoma, Los Angeles, Memphis, and San Antonio, the researchers trained the CNN on 1.2 million images from the ImageNet database. The categorizations were correlated with obesity prevalence estimates for the six urban areas from census tracts gathered by the 500 Cities project.

The system was able to identify the presence of certain features that increased likelihood of obesity in a given area. Some of these features included tightly–packed houses, being close to roadways, and living in neighborhoods with a lack of greenery.

Visualization of features identified by the convolutional neural network (CNN) model. The images on the left column are satellite images taken from Google Static Maps API (application programming interface). Images in the middle and right columns are activation maps taken from the second convolutional layer of VGG-CNN-F network after forward pass of the respective satellite images through the network. From Google Static Maps API, DigitalGlobe, US Geological Survey (accessed July 2017). Credit: JAMA Network Open
Your Surroundings Are Key
In their discussion of the findings, the researchers stressed that there are limitations to the conclusions that can be drawn from the AI’s results. For example, socio-economic factors like income likely play a major role for obesity prevalence in a given geographic area.

However, the study concluded that the AI-powered analysis showed the prevalence of specific man-made features in neighborhoods consistently correlating with obesity prevalence and not necessarily correlating with socioeconomic status.

The system’s success rates varied between studied cities, with Memphis being the highest (73.3 percent) and Seattle being the lowest (55.8 percent).

AI Takes To the Sky
Around a third of the US population is categorized as obese. Obesity is linked to a number of health-related issues, and the AI-generated results could potentially help improve city planning and better target campaigns to limit obesity.

The study is one of the latest of a growing list that uses AI to analyze images and extrapolate insights.

A team at Stanford University has used a CNN to predict poverty via satellite imagery, assisting governments and NGOs to better target their efforts. A combination of the public Automatic Identification System for shipping, satellite imagery, and Google’s AI has proven able to identify illegal fishing activity. Researchers have even been able to use AI and Google Street View to predict what party a given city will vote for, based on what cars are parked on the streets.

In each case, the AI systems have been able to look at volumes of data about our world and surroundings that are beyond the capabilities of humans and extrapolate new insights. If one were to moralize about the good and bad sides of AI (new opportunities vs. potential job losses, for example) it could seem that it comes down to what we ask AI systems to look at—and what questions we ask of them.

Image Credit: Ocean Biology Processing Group at NASA’s Goddard Space Flight Center Continue reading

Posted in Human Robots

#432882 Why the Discovery of Room-Temperature ...

Superconductors are among the most bizarre and exciting materials yet discovered. Counterintuitive quantum-mechanical effects mean that, below a critical temperature, they have zero electrical resistance. This property alone is more than enough to spark the imagination.

A current that could flow forever without losing any energy means transmission of power with virtually no losses in the cables. When renewable energy sources start to dominate the grid and high-voltage transmission across continents becomes important to overcome intermittency, lossless cables will result in substantial savings.

What’s more, a superconducting wire carrying a current that never, ever diminishes would act as a perfect store of electrical energy. Unlike batteries, which degrade over time, if the resistance is truly zero, you could return to the superconductor in a billion years and find that same old current flowing through it. Energy could be captured and stored indefinitely!

With no resistance, a huge current could be passed through the superconducting wire and, in turn, produce magnetic fields of incredible power.

You could use them to levitate trains and produce astonishing accelerations, thereby revolutionizing the transport system. You could use them in power plants—replacing conventional methods which spin turbines in magnetic fields to generate electricity—and in quantum computers as the two-level system required for a “qubit,” in which the zeros and ones are replaced by current flowing clockwise or counterclockwise in a superconductor.

Arthur C. Clarke famously said that any sufficiently advanced technology is indistinguishable from magic; superconductors can certainly seem like magical devices. So, why aren’t they busy remaking the world? There’s a problem—that critical temperature.

For all known materials, it’s hundreds of degrees below freezing. Superconductors also have a critical magnetic field; beyond a certain magnetic field strength, they cease to work. There’s a tradeoff: materials with an intrinsically high critical temperature can also often provide the largest magnetic fields when cooled well below that temperature.

This has meant that superconductor applications so far have been limited to situations where you can afford to cool the components of your system to close to absolute zero: in particle accelerators and experimental nuclear fusion reactors, for example.

But even as some aspects of superconductor technology become mature in limited applications, the search for higher temperature superconductors moves on. Many physicists still believe a room-temperature superconductor could exist. Such a discovery would unleash amazing new technologies.

The Quest for Room-Temperature Superconductors
After Heike Kamerlingh Onnes discovered superconductivity by accident while attempting to prove Lord Kelvin’s theory that resistance would increase with decreasing temperature, theorists scrambled to explain the new property in the hope that understanding it might allow for room-temperature superconductors to be synthesized.

They came up with the BCS theory, which explained some of the properties of superconductors. It also predicted that the dream of technologists, a room-temperature superconductor, could not exist; the maximum temperature for superconductivity according to BCS theory was just 30 K.

Then, in the 1980s, the field changed again with the discovery of unconventional, or high-temperature, superconductivity. “High temperature” is still very cold: the highest temperature for superconductivity achieved was -70°C for hydrogen sulphide at extremely high pressures. For normal pressures, -140°C is near the upper limit. Unfortunately, high-temperature superconductors—which require relatively cheap liquid nitrogen, rather than liquid helium, to cool—are mostly brittle ceramics, which are expensive to form into wires and have limited application.

Given the limitations of high-temperature superconductors, researchers continue to believe there’s a better option awaiting discovery—an incredible new material that checks boxes like superconductivity approaching room temperature, affordability, and practicality.

Tantalizing Clues
Without a detailed theoretical understanding of how this phenomenon occurs—although incremental progress happens all the time—scientists can occasionally feel like they’re taking educated guesses at materials that might be likely candidates. It’s a little like trying to guess a phone number, but with the periodic table of elements instead of digits.

Yet the prospect remains, in the words of one researcher, tantalizing. A Nobel Prize and potentially changing the world of energy and electricity is not bad for a day’s work.

Some research focuses on cuprates, complex crystals that contain layers of copper and oxygen atoms. Doping cuprates with various different elements, such exotic compounds as mercury barium calcium copper oxide, are amongst the best superconductors known today.

Research also continues into some anomalous but unexplained reports that graphite soaked in water can act as a room-temperature superconductor, but there’s no indication that this could be used for technological applications yet.

In early 2017, as part of the ongoing effort to explore the most extreme and exotic forms of matter we can create on Earth, researchers managed to compress hydrogen into a metal.

The pressure required to do this was more than that at the core of the Earth and thousands of times higher than that at the bottom of the ocean. Some researchers in the field, called condensed-matter physics, doubt that metallic hydrogen was produced at all.

It’s considered possible that metallic hydrogen could be a room-temperature superconductor. But getting the samples to stick around long enough for detailed testing has proved tricky, with the diamonds containing the metallic hydrogen suffering a “catastrophic failure” under the pressure.

Superconductivity—or behavior that strongly resembles it—was also observed in yttrium barium copper oxide (YBCO) at room temperature in 2014. The only catch was that this electron transport lasted for a tiny fraction of a second and required the material to be bombarded with pulsed lasers.

Not very practical, you might say, but tantalizing nonetheless.

Other new materials display enticing properties too. The 2016 Nobel Prize in Physics was awarded for the theoretical work that characterizes topological insulators—materials that exhibit similarly strange quantum behaviors. They can be considered perfect insulators for the bulk of the material but extraordinarily good conductors in a thin layer on the surface.

Microsoft is betting on topological insulators as the key component in their attempt at a quantum computer. They’ve also been considered potentially important components in miniaturized circuitry.

A number of remarkable electronic transport properties have also been observed in new, “2D” structures—like graphene, these are materials synthesized to be as thick as a single atom or molecule. And research continues into how we can utilize the superconductors we’ve already discovered; for example, some teams are trying to develop insulating material that prevents superconducting HVDC cable from overheating.

Room-temperature superconductivity remains as elusive and exciting as it has been for over a century. It is unclear whether a room-temperature superconductor can exist, but the discovery of high-temperature superconductors is a promising indicator that unconventional and highly useful quantum effects may be discovered in completely unexpected materials.

Perhaps in the future—through artificial intelligence simulations or the serendipitous discoveries of a 21st century Kamerlingh Onnes—this little piece of magic could move into the realm of reality.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#432878 Chinese Port Goes Full Robot With ...

By the end of 2018, something will be very different about the harbor area in the northern Chinese city of Caofeidian. If you were to visit, the whirring cranes and tractors driving containers to and fro would be the only things in sight.

Caofeidian is set to become the world’s first fully autonomous harbor by the end of the year. The US-Chinese startup TuSimple, a specialist in developing self-driving trucks, will replace human-driven terminal tractor-trucks with 20 self-driving models. A separate company handles crane automation, and a central control system will coordinate the movements of both.

According to Robert Brown, Director of Public Affairs at TuSimple, the project could quickly transform into a much wider trend. “The potential for automating systems in harbors and ports is staggering when considering the number of deep-water and inland ports around the world. At the same time, the closed, controlled nature of a port environment makes it a perfect proving ground for autonomous truck technology,” he said.

Going Global
The autonomous cranes and trucks have a big task ahead of them. Caofeidian currently processes around 300,000 TEU containers a year. Even if you were dealing with Lego bricks, that number of units would get you a decent-sized cathedral or a 22-foot-long aircraft carrier. For any maritime fans—or people who enjoy the moving of heavy objects—TEU stands for twenty-foot equivalent unit. It is the industry standard for containers. A TEU equals an 8-foot (2.43 meter) wide, 8.5-foot (2.59 meter) high, and 20-foot (6.06 meter) long container.

While impressive, the Caofeidian number pales in comparison with the biggest global ports like Shanghai, Singapore, Busan, or Rotterdam. For example, 2017 saw more than 40 million TEU moved through Shanghai port facilities.

Self-driving container vehicles have been trialled elsewhere, including in Yangshan, close to Shanghai, and Rotterdam. Qingdao New Qianwan Container Terminal in China recently laid claim to being the first fully automated terminal in Asia.

The potential for efficiencies has many ports interested in automation. Qingdao said its systems allow the terminal to operate in complete darkness and have reduced labor costs by 70 percent while increasing efficiency by 30 percent. In some cases, the number of workers needed to unload a cargo ship has gone from 60 to 9.

TuSimple says it is in negotiations with several other ports and also sees potential in related logistics-heavy fields.

Stable Testing Ground
For autonomous vehicles, ports seem like a perfect testing ground. They are restricted, confined areas with few to no pedestrians where operating speeds are limited. The predictability makes it unlike, say, city driving.

Robert Brown describes it as an ideal setting for the first adaptation of TuSimple’s technology. The company, which, amongst others, is backed by chipmaker Nvidia, have been retrofitting existing vehicles from Shaanxi Automobile Group with sensors and technology.

At the same time, it is running open road tests in Arizona and China of its Class 8 Level 4 autonomous trucks.

The Camera Approach
Dozens of autonomous truck startups are reported to have launched in China over the past two years. In other countries the situation is much the same, as the race for the future of goods transportation heats up. Startup companies like Embark, Einride, Starsky Robotics, and Drive.ai are just a few of the names in the space. They are facing competition from the likes of Tesla, Daimler, VW, Uber’s Otto subsidiary, and in March, Waymo announced it too was getting into the truck race.

Compared to many of its competitors, TuSimple’s autonomous driving system is based on a different approach. Instead of laser-based radar (LIDAR), TuSimple primarily uses cameras to gather data about its surroundings. Currently, the company uses ten cameras, including forward-facing, backward-facing, and wide-lens. Together, they produce the 360-degree “God View” of the vehicle’s surroundings, which is interpreted by the onboard autonomous driving systems.

Each camera gathers information at 30 frames a second. Millimeter wave radar is used as a secondary sensor. In total, the vehicles generate what Robert Brown describes with a laugh as “almost too much” data about its surroundings and is accurate beyond 300 meters in locating and identifying objects. This includes objects that have given LIDAR problems, such as black vehicles.

Another advantage is price. Companies often loathe revealing exact amounts, but Tesla has gone as far as to say that the ‘expected’ price of its autonomous truck will be from $150,0000 and upwards. While unconfirmed, TuSimple’s retrofitted, camera-based solution is thought to cost around $20,000.

Image Credit: chinahbzyg / Shutterstock.com Continue reading

Posted in Human Robots