Tag Archives: city

#433486 This AI Predicts Obesity ...

A research team at the University of Washington has trained an artificial intelligence system to spot obesity—all the way from space. The system used a convolutional neural network (CNN) to analyze 150,000 satellite images and look for correlations between the physical makeup of a neighborhood and the prevalence of obesity.

The team’s results, presented in JAMA Network Open, showed that features of a given neighborhood could explain close to two-thirds (64.8 percent) of the variance in obesity. Researchers found that analyzing satellite data could help increase understanding of the link between peoples’ environment and obesity prevalence. The next step would be to make corresponding structural changes in the way neighborhoods are built to encourage physical activity and better health.

Training AI to Spot Obesity
Convolutional neural networks (CNNs) are particularly adept at image analysis, object recognition, and identifying special hierarchies in large datasets.

Prior to analyzing 150,000 high-resolution satellite images of Bellevue, Seattle, Tacoma, Los Angeles, Memphis, and San Antonio, the researchers trained the CNN on 1.2 million images from the ImageNet database. The categorizations were correlated with obesity prevalence estimates for the six urban areas from census tracts gathered by the 500 Cities project.

The system was able to identify the presence of certain features that increased likelihood of obesity in a given area. Some of these features included tightly–packed houses, being close to roadways, and living in neighborhoods with a lack of greenery.

Visualization of features identified by the convolutional neural network (CNN) model. The images on the left column are satellite images taken from Google Static Maps API (application programming interface). Images in the middle and right columns are activation maps taken from the second convolutional layer of VGG-CNN-F network after forward pass of the respective satellite images through the network. From Google Static Maps API, DigitalGlobe, US Geological Survey (accessed July 2017). Credit: JAMA Network Open
Your Surroundings Are Key
In their discussion of the findings, the researchers stressed that there are limitations to the conclusions that can be drawn from the AI’s results. For example, socio-economic factors like income likely play a major role for obesity prevalence in a given geographic area.

However, the study concluded that the AI-powered analysis showed the prevalence of specific man-made features in neighborhoods consistently correlating with obesity prevalence and not necessarily correlating with socioeconomic status.

The system’s success rates varied between studied cities, with Memphis being the highest (73.3 percent) and Seattle being the lowest (55.8 percent).

AI Takes To the Sky
Around a third of the US population is categorized as obese. Obesity is linked to a number of health-related issues, and the AI-generated results could potentially help improve city planning and better target campaigns to limit obesity.

The study is one of the latest of a growing list that uses AI to analyze images and extrapolate insights.

A team at Stanford University has used a CNN to predict poverty via satellite imagery, assisting governments and NGOs to better target their efforts. A combination of the public Automatic Identification System for shipping, satellite imagery, and Google’s AI has proven able to identify illegal fishing activity. Researchers have even been able to use AI and Google Street View to predict what party a given city will vote for, based on what cars are parked on the streets.

In each case, the AI systems have been able to look at volumes of data about our world and surroundings that are beyond the capabilities of humans and extrapolate new insights. If one were to moralize about the good and bad sides of AI (new opportunities vs. potential job losses, for example) it could seem that it comes down to what we ask AI systems to look at—and what questions we ask of them.

Image Credit: Ocean Biology Processing Group at NASA’s Goddard Space Flight Center Continue reading

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#432878 Chinese Port Goes Full Robot With ...

By the end of 2018, something will be very different about the harbor area in the northern Chinese city of Caofeidian. If you were to visit, the whirring cranes and tractors driving containers to and fro would be the only things in sight.

Caofeidian is set to become the world’s first fully autonomous harbor by the end of the year. The US-Chinese startup TuSimple, a specialist in developing self-driving trucks, will replace human-driven terminal tractor-trucks with 20 self-driving models. A separate company handles crane automation, and a central control system will coordinate the movements of both.

According to Robert Brown, Director of Public Affairs at TuSimple, the project could quickly transform into a much wider trend. “The potential for automating systems in harbors and ports is staggering when considering the number of deep-water and inland ports around the world. At the same time, the closed, controlled nature of a port environment makes it a perfect proving ground for autonomous truck technology,” he said.

Going Global
The autonomous cranes and trucks have a big task ahead of them. Caofeidian currently processes around 300,000 TEU containers a year. Even if you were dealing with Lego bricks, that number of units would get you a decent-sized cathedral or a 22-foot-long aircraft carrier. For any maritime fans—or people who enjoy the moving of heavy objects—TEU stands for twenty-foot equivalent unit. It is the industry standard for containers. A TEU equals an 8-foot (2.43 meter) wide, 8.5-foot (2.59 meter) high, and 20-foot (6.06 meter) long container.

While impressive, the Caofeidian number pales in comparison with the biggest global ports like Shanghai, Singapore, Busan, or Rotterdam. For example, 2017 saw more than 40 million TEU moved through Shanghai port facilities.

Self-driving container vehicles have been trialled elsewhere, including in Yangshan, close to Shanghai, and Rotterdam. Qingdao New Qianwan Container Terminal in China recently laid claim to being the first fully automated terminal in Asia.

The potential for efficiencies has many ports interested in automation. Qingdao said its systems allow the terminal to operate in complete darkness and have reduced labor costs by 70 percent while increasing efficiency by 30 percent. In some cases, the number of workers needed to unload a cargo ship has gone from 60 to 9.

TuSimple says it is in negotiations with several other ports and also sees potential in related logistics-heavy fields.

Stable Testing Ground
For autonomous vehicles, ports seem like a perfect testing ground. They are restricted, confined areas with few to no pedestrians where operating speeds are limited. The predictability makes it unlike, say, city driving.

Robert Brown describes it as an ideal setting for the first adaptation of TuSimple’s technology. The company, which, amongst others, is backed by chipmaker Nvidia, have been retrofitting existing vehicles from Shaanxi Automobile Group with sensors and technology.

At the same time, it is running open road tests in Arizona and China of its Class 8 Level 4 autonomous trucks.

The Camera Approach
Dozens of autonomous truck startups are reported to have launched in China over the past two years. In other countries the situation is much the same, as the race for the future of goods transportation heats up. Startup companies like Embark, Einride, Starsky Robotics, and Drive.ai are just a few of the names in the space. They are facing competition from the likes of Tesla, Daimler, VW, Uber’s Otto subsidiary, and in March, Waymo announced it too was getting into the truck race.

Compared to many of its competitors, TuSimple’s autonomous driving system is based on a different approach. Instead of laser-based radar (LIDAR), TuSimple primarily uses cameras to gather data about its surroundings. Currently, the company uses ten cameras, including forward-facing, backward-facing, and wide-lens. Together, they produce the 360-degree “God View” of the vehicle’s surroundings, which is interpreted by the onboard autonomous driving systems.

Each camera gathers information at 30 frames a second. Millimeter wave radar is used as a secondary sensor. In total, the vehicles generate what Robert Brown describes with a laugh as “almost too much” data about its surroundings and is accurate beyond 300 meters in locating and identifying objects. This includes objects that have given LIDAR problems, such as black vehicles.

Another advantage is price. Companies often loathe revealing exact amounts, but Tesla has gone as far as to say that the ‘expected’ price of its autonomous truck will be from $150,0000 and upwards. While unconfirmed, TuSimple’s retrofitted, camera-based solution is thought to cost around $20,000.

Image Credit: chinahbzyg / Shutterstock.com Continue reading

Posted in Human Robots

#432519 Robot Cities: Three Urban Prototypes for ...

Before I started working on real-world robots, I wrote about their fictional and historical ancestors. This isn’t so far removed from what I do now. In factories, labs, and of course science fiction, imaginary robots keep fueling our imagination about artificial humans and autonomous machines.

Real-world robots remain surprisingly dysfunctional, although they are steadily infiltrating urban areas across the globe. This fourth industrial revolution driven by robots is shaping urban spaces and urban life in response to opportunities and challenges in economic, social, political, and healthcare domains. Our cities are becoming too big for humans to manage.

Good city governance enables and maintains smooth flow of things, data, and people. These include public services, traffic, and delivery services. Long queues in hospitals and banks imply poor management. Traffic congestion demonstrates that roads and traffic systems are inadequate. Goods that we increasingly order online don’t arrive fast enough. And the WiFi often fails our 24/7 digital needs. In sum, urban life, characterized by environmental pollution, speedy life, traffic congestion, connectivity and increased consumption, needs robotic solutions—or so we are led to believe.

Is this what the future holds? Image Credit: Photobank gallery / Shutterstock.com
In the past five years, national governments have started to see automation as the key to (better) urban futures. Many cities are becoming test beds for national and local governments for experimenting with robots in social spaces, where robots have both practical purpose (to facilitate everyday life) and a very symbolic role (to demonstrate good city governance). Whether through autonomous cars, automated pharmacists, service robots in local stores, or autonomous drones delivering Amazon parcels, cities are being automated at a steady pace.

Many large cities (Seoul, Tokyo, Shenzhen, Singapore, Dubai, London, San Francisco) serve as test beds for autonomous vehicle trials in a competitive race to develop “self-driving” cars. Automated ports and warehouses are also increasingly automated and robotized. Testing of delivery robots and drones is gathering pace beyond the warehouse gates. Automated control systems are monitoring, regulating and optimizing traffic flows. Automated vertical farms are innovating production of food in “non-agricultural” urban areas around the world. New mobile health technologies carry promise of healthcare “beyond the hospital.” Social robots in many guises—from police officers to restaurant waiters—are appearing in urban public and commercial spaces.

Vertical indoor farm. Image Credit: Aisyaqilumaranas / Shutterstock.com
As these examples show, urban automation is taking place in fits and starts, ignoring some areas and racing ahead in others. But as yet, no one seems to be taking account of all of these various and interconnected developments. So, how are we to forecast our cities of the future? Only a broad view allows us to do this. To give a sense, here are three examples: Tokyo, Dubai, and Singapore.

Tokyo
Currently preparing to host the Olympics 2020, Japan’s government also plans to use the event to showcase many new robotic technologies. Tokyo is therefore becoming an urban living lab. The institution in charge is the Robot Revolution Realization Council, established in 2014 by the government of Japan.

Tokyo: city of the future. Image Credit: ESB Professional / Shutterstock.com
The main objectives of Japan’s robotization are economic reinvigoration, cultural branding, and international demonstration. In line with this, the Olympics will be used to introduce and influence global technology trajectories. In the government’s vision for the Olympics, robot taxis transport tourists across the city, smart wheelchairs greet Paralympians at the airport, ubiquitous service robots greet customers in 20-plus languages, and interactively augmented foreigners speak with the local population in Japanese.

Tokyo shows us what the process of state-controlled creation of a robotic city looks like.

Singapore
Singapore, on the other hand, is a “smart city.” Its government is experimenting with robots with a different objective: as physical extensions of existing systems to improve management and control of the city.

In Singapore, the techno-futuristic national narrative sees robots and automated systems as a “natural” extension of the existing smart urban ecosystem. This vision is unfolding through autonomous delivery robots (the Singapore Post’s delivery drone trials in partnership with AirBus helicopters) and driverless bus shuttles from Easymile, EZ10.

Meanwhile, Singapore hotels are employing state-subsidized service robots to clean rooms and deliver linen and supplies, and robots for early childhood education have been piloted to understand how robots can be used in pre-schools in the future. Health and social care is one of the fastest growing industries for robots and automation in Singapore and globally.

Dubai
Dubai is another emerging prototype of a state-controlled smart city. But rather than seeing robotization simply as a way to improve the running of systems, Dubai is intensively robotizing public services with the aim of creating the “happiest city on Earth.” Urban robot experimentation in Dubai reveals that authoritarian state regimes are finding innovative ways to use robots in public services, transportation, policing, and surveillance.

National governments are in competition to position themselves on the global politico-economic landscape through robotics, and they are also striving to position themselves as regional leaders. This was the thinking behind the city’s September 2017 test flight of a flying taxi developed by the German drone firm Volocopter—staged to “lead the Arab world in innovation.” Dubai’s objective is to automate 25% of its transport system by 2030.

It is currently also experimenting with Barcelona-based PAL Robotics’ humanoid police officer and Singapore-based vehicle OUTSAW. If the experiments are successful, the government has announced it will robotize 25% of the police force by 2030.

While imaginary robots are fueling our imagination more than ever—from Ghost in the Shell to Blade Runner 2049—real-world robots make us rethink our urban lives.

These three urban robotic living labs—Tokyo, Singapore, Dubai—help us gauge what kind of future is being created, and by whom. From hyper-robotized Tokyo to smartest Singapore and happy, crime-free Dubai, these three comparisons show that, no matter what the context, robots are perceived as a means to achieve global futures based on a specific national imagination. Just like the films, they demonstrate the role of the state in envisioning and creating that future.

This article was originally published on The Conversation. Read the original article.

Image Credit: 3000ad / Shutterstock.com Continue reading

Posted in Human Robots

#432293 An Innovator’s City Guide to Shanghai

Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.

Meet Your Guide

Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century

Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance

1. Coworking Space: Mixpace

With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.

2. Makerspace: XinCheJian

The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.

3. Local meetups/ networks: FinTech Connector

FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.

4. Best coffee shop with free WiFi: Seesaw

Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.

5. The startup neighborhood: Knowledge & Innovation Community (KIC)

Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.

6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen

Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.

7. Best way to get around: Metro

Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.

8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.

Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.

9. City’s best-kept secret: Barber Shop

This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).

10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund

On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.

11. Local volunteering opportunity: Shanghai Volunteer

Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.

12. Local University with great resources: Shanghai Jiao Tong University

Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.

This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.

Image Credits: Qinsong (Dora) Ke

Banner Image Credit: ESB Professional / Shutterstock.com Continue reading

Posted in Human Robots