Tag Archives: chief

#431427 Why the Best Healthcare Hacks Are the ...

Technology has the potential to solve some of our most intractable healthcare problems. In fact, it’s already doing so, with inventions getting us closer to a medical Tricorder, and progress toward 3D printed organs, and AIs that can do point-of-care diagnosis.
No doubt these applications of cutting-edge tech will continue to push the needle on progress in medicine, diagnosis, and treatment. But what if some of the healthcare hacks we need most aren’t high-tech at all?
According to Dr. Darshak Sanghavi, this is exactly the case. In a talk at Singularity University’s Exponential Medicine last week, Sanghavi told the audience, “We often think in extremely complex ways, but I think a lot of the improvements in health at scale can be done in an analog way.”
Sanghavi is the chief medical officer and senior vice president of translation at OptumLabs, and was previously director of preventive and population health at the Center for Medicare and Medicaid Innovation, where he oversaw the development of large pilot programs aimed at improving healthcare costs and quality.
“How can we improve health at scale, not for only a small number of people, but for entire populations?” Sanghavi asked. With programs that benefit a small group of people, he explained, what tends to happen is that the average health of a population improves, but the disparities across the group worsen.
“My mantra became, ‘The denominator is everybody,’” he said. He shared details of some low-tech but crucial fixes he believes could vastly benefit the US healthcare system.
1. Regulatory Hacking
Healthcare regulations are ultimately what drive many aspects of patient care, for better or worse. Worse because the mind-boggling complexity of regulations (exhibit A: the Affordable Care Act is reportedly about 20,000 pages long) can make it hard for people to get the care they need at a cost they can afford, but better because, as Sanghavi explained, tweaking these regulations in the right way can result in across-the-board improvements in a given population’s health.
An adjustment to Medicare hospitalization rules makes for a relevant example. The code was updated to state that if people who left the hospital were re-admitted within 30 days, that hospital had to pay a penalty. The result was hospitals taking more care to ensure patients were released not only in good health, but also with a solid understanding of what they had to do to take care of themselves going forward. “Here, arguably the writing of a few lines of regulatory code resulted in a remarkable decrease in 30-day re-admissions, and the savings of several billion dollars,” Sanghavi said.
2. Long-Term Focus
It’s easy to focus on healthcare hacks that have immediate, visible results—but what about fixes whose benefits take years to manifest? How can we motivate hospitals, regulators, and doctors to take action when they know they won’t see changes anytime soon?
“I call this the reality TV problem,” Sanghavi said. “Reality shows don’t really care about who’s the most talented recording artist—they care about getting the most viewers. That is exactly how we think about health care.”
Sanghavi’s team wanted to address this problem for heart attacks. They found they could reliably determine someone’s 10-year risk of having a heart attack based on a simple risk profile. Rather than monitoring patients’ cholesterol, blood pressure, weight, and other individual factors, the team took the average 10-year risk across entire provider panels, then made providers responsible for controlling those populations.
“Every percentage point you lower that risk, by hook or by crook, you get some people to stop smoking, you get some people on cholesterol medication. It’s patient-centered decision-making, and the provider then makes money. This is the world’s first predictive analytic model, at scale, that’s actually being paid for at scale,” he said.
3. Aligned Incentives
If hospitals are held accountable for the health of the communities they’re based in, those hospitals need to have the right incentives to follow through. “Hospitals have to spend money on community benefit, but linking that benefit to a meaningful population health metric can catalyze significant improvements,” Sanghavi said.
Darshak Sanghavi speaking at Singularity University’s 2017 Exponential Medicine Summit in San Diego, CA.
He used smoking cessation as an example. His team designed a program where hospitals were given a score (determined by the Centers for Disease Control and Prevention) based on the smoking rate in the counties where they’re located, then given monetary incentives to improve their score. Improving their score, in turn, resulted in better health for their communities, which meant fewer patients to treat for smoking-related health problems.
4. Social Determinants of Health
Social determinants of health include factors like housing, income, family, and food security. The answer to getting people to pay attention to these factors at scale, and creating aligned incentives, Sanghavi said, is “Very simple. We just have to measure it to start with, and measure it universally.”
His team was behind a $157 million pilot program called Accountable Health Communities that went live this year. The program requires all Medicare and Medicaid beneficiaries get screened for various social determinants of health. With all that data being collected, analysts can pinpoint local trends, then target funds to address the underlying problem, whether it’s job training, drug use, or nutritional education. “You’re then free to invest the dollars where they’re needed…this is how we can improve health at scale, with very simple changes in the incentive structures that are created,” he said.
5. ‘Securitizing’ Public Health
Sanghavi’s final point tied back to his discussion of aligning incentives. As misguided as it may seem, the reality is that financial incentives can make a huge difference in healthcare outcomes, from both a patient and a provider perspective.
Sanghavi’s team did an experiment in which they created outcome benchmarks for three major health problems that exist across geographically diverse areas: smoking, adolescent pregnancy, and binge drinking. The team proposed measuring the baseline of these issues then creating what they called a social impact bond. If communities were able to lower their frequency of these conditions by a given percent within a stated period of time, they’d get paid for it.
“What that did was essentially say, ‘you have a buyer for this outcome if you can achieve it,’” Sanghavi said. “And you can try to get there in any way you like.” The program is currently in CMS clearance.
AI and Robots Not Required
Using robots to perform surgery and artificial intelligence to diagnose disease will undoubtedly benefit doctors and patients around the US and the world. But Sanghavi’s talk made it clear that our healthcare system needs much more than this, and that improving population health on a large scale is really a low-tech project—one involving more regulatory and financial innovation than technological innovation.
“The things that get measured are the things that get changed,” he said. “If we choose the right outcomes to predict long-term benefit, and we pay for those outcomes, that’s the way to make progress.”
Image Credit: Wonderful Nature / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431389 Tech Is Becoming Emotionally ...

Many people get frustrated with technology when it malfunctions or is counterintuitive. The last thing people might expect is for that same technology to pick up on their emotions and engage with them differently as a result.
All of that is now changing. Computers are increasingly able to figure out what we’re feeling—and it’s big business.
A recent report predicts that the global affective computing market will grow from $12.2 billion in 2016 to $53.98 billion by 2021. The report by research and consultancy firm MarketsandMarkets observed that enabling technologies have already been adopted in a wide range of industries and noted a rising demand for facial feature extraction software.
Affective computing is also referred to as emotion AI or artificial emotional intelligence. Although many people are still unfamiliar with the category, researchers in academia have already discovered a multitude of uses for it.
At the University of Tokyo, Professor Toshihiko Yamasaki decided to develop a machine learning system that evaluates the quality of TED Talk videos. Of course, a TED Talk is only considered to be good if it resonates with a human audience. On the surface, this would seem too qualitatively abstract for computer analysis. But Yamasaki wanted his system to watch videos of presentations and predict user impressions. Could a machine learning system accurately evaluate the emotional persuasiveness of a speaker?
Yamasaki and his colleagues came up with a method that analyzed correlations and “multimodal features including linguistic as well as acoustic features” in a dataset of 1,646 TED Talk videos. The experiment was successful. The method obtained “a statistically significant macro-average accuracy of 93.3 percent, outperforming several competitive baseline methods.”
A machine was able to predict whether or not a person would emotionally connect with other people. In their report, the authors noted that these findings could be used for recommendation purposes and also as feedback to the presenters, in order to improve the quality of their public presentation. However, the usefulness of affective computing goes far beyond the way people present content. It may also transform the way they learn it.
Researchers from North Carolina State University explored the connection between students’ affective states and their ability to learn. Their software was able to accurately predict the effectiveness of online tutoring sessions by analyzing the facial expressions of participating students. The software tracked fine-grained facial movements such as eyebrow raising, eyelid tightening, and mouth dimpling to determine engagement, frustration, and learning. The authors concluded that “analysis of facial expressions has great potential for educational data mining.”
This type of technology is increasingly being used within the private sector. Affectiva is a Boston-based company that makes emotion recognition software. When asked to comment on this emerging technology, Gabi Zijderveld, chief marketing officer at Affectiva, explained in an interview for this article, “Our software measures facial expressions of emotion. So basically all you need is our software running and then access to a camera so you can basically record a face and analyze it. We can do that in real time or we can do this by looking at a video and then analyzing data and sending it back to folks.”
The technology has particular relevance for the advertising industry.
Zijderveld said, “We have products that allow you to measure how consumers or viewers respond to digital content…you could have a number of people looking at an ad, you measure their emotional response so you aggregate the data and it gives you insight into how well your content is performing. And then you can adapt and adjust accordingly.”
Zijderveld explained that this is the first market where the company got traction. However, they have since packaged up their core technology in software development kits or SDKs. This allows other companies to integrate emotion detection into whatever they are building.
By licensing its technology to others, Affectiva is now rapidly expanding into a wide variety of markets, including gaming, education, robotics, and healthcare. The core technology is also used in human resources for the purposes of video recruitment. The software analyzes the emotional responses of interviewees, and that data is factored into hiring decisions.
Richard Yonck is founder and president of Intelligent Future Consulting and the author of a book about our relationship with technology. “One area I discuss in Heart of the Machine is the idea of an emotional economy that will arise as an ecosystem of emotionally aware businesses, systems, and services are developed. This will rapidly expand into a multi-billion-dollar industry, leading to an infrastructure that will be both emotionally responsive and potentially exploitive at personal, commercial, and political levels,” said Yonck, in an interview for this article.
According to Yonck, these emotionally-aware systems will “better anticipate needs, improve efficiency, and reduce stress and misunderstandings.”
Affectiva is uniquely positioned to profit from this “emotional economy.” The company has already created the world’s largest emotion database. “We’ve analyzed a little bit over 4.7 million faces in 75 countries,” said Zijderveld. “This is data first and foremost, it’s data gathered with consent. So everyone has opted in to have their faces analyzed.”
The vastness of that database is essential for deep learning approaches. The software would be inaccurate if the data was inadequate. According to Zijderveld, “If you don’t have massive amounts of data of people of all ages, genders, and ethnicities, then your algorithms are going to be pretty biased.”
This massive database has already revealed cultural insights into how people express emotion. Zijderveld explained, “Obviously everyone knows that women are more expressive than men. But our data confirms that, but not only that, it can also show that women smile longer. They tend to smile more often. There’s also regional differences.”
Yonck believes that affective computing will inspire unimaginable forms of innovation and that change will happen at a fast pace.
He explained, “As businesses, software, systems, and services develop, they’ll support and make possible all sorts of other emotionally aware technologies that couldn’t previously exist. This leads to a spiral of increasingly sophisticated products, just as happened in the early days of computing.”
Those who are curious about affective technology will soon be able to interact with it.
Hubble Connected unveiled the Hubble Hugo at multiple trade shows this year. Hugo is billed as “the world’s first smart camera,” with emotion AI video analytics powered by Affectiva. The product can identify individuals, figure out how they’re feeling, receive voice commands, video monitor your home, and act as a photographer and videographer of events. Media can then be transmitted to the cloud. The company’s website describes Hugo as “a fun pal to have in the house.”
Although he sees the potential for improved efficiencies and expanding markets, Richard Yonck cautions that AI technology is not without its pitfalls.
“It’s critical that we understand we are headed into very unknown territory as we develop these systems, creating problems unlike any we’ve faced before,” said Yonck. “We should put our focus on ensuring AI develops in a way that represents our human values and ideals.”
Image Credit: Kisan / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431165 Intel Jumps Into Brain-Like Computing ...

The brain has long inspired the design of computers and their software. Now Intel has become the latest tech company to decide that mimicking the brain’s hardware could be the next stage in the evolution of computing.
On Monday the company unveiled an experimental “neuromorphic” chip called Loihi. Neuromorphic chips are microprocessors whose architecture is configured to mimic the biological brain’s network of neurons and the connections between them called synapses.
While neural networks—the in vogue approach to artificial intelligence and machine learning—are also inspired by the brain and use layers of virtual neurons, they are still implemented on conventional silicon hardware such as CPUs and GPUs.
The main benefit of mimicking the architecture of the brain on a physical chip, say neuromorphic computing’s proponents, is energy efficiency—the human brain runs on roughly 20 watts. The “neurons” in neuromorphic chips carry out the role of both processor and memory which removes the need to shuttle data back and forth between separate units, which is how traditional chips work. Each neuron also only needs to be powered while it’s firing.

At present, most machine learning is done in data centers due to the massive energy and computing requirements. Creating chips that capture some of nature’s efficiency could allow AI to be run directly on devices like smartphones, cars, and robots.
This is exactly the kind of application Michael Mayberry, managing director of Intel’s research arm, touts in a blog post announcing Loihi. He talks about CCTV cameras that can run image recognition to identify missing persons or traffic lights that can track traffic flow to optimize timing and keep vehicles moving.
There’s still a long way to go before that happens though. According to Wired, so far Intel has only been working with prototypes, and the first full-size version of the chip won’t be built until November.
Once complete, it will feature 130,000 neurons and 130 million synaptic connections split between 128 computing cores. The device will be 1,000 times more energy-efficient than standard approaches, according to Mayberry, but more impressive are claims the chip will be capable of continuous learning.
Intel’s newly launched self-learning neuromorphic chip.
Normally deep learning works by training a neural network on giant datasets to create a model that can then be applied to new data. The Loihi chip will combine training and inference on the same chip, which will allow it to learn on the fly, constantly updating its models and adapting to changing circumstances without having to be deliberately re-trained.
A select group of universities and research institutions will be the first to get their hands on the new chip in the first half of 2018, but Mayberry said it could be years before it’s commercially available. Whether commercialization happens at all may largely depend on whether early adopters can get the hardware to solve any practically useful problems.
So far neuromorphic computing has struggled to gain traction outside the research community. IBM released a neuromorphic chip called TrueNorth in 2014, but the device has yet to showcase any commercially useful applications.
Lee Gomes summarizes the hurdles facing neuromorphic computing excellently in IEEE Spectrum. One is that deep learning can run on very simple, low-precision hardware that can be optimized to use very little power, which suggests complicated new architectures may struggle to find purchase.
It’s also not easy to transfer deep learning approaches developed on conventional chips over to neuromorphic hardware, and even Intel Labs chief scientist Narayan Srinivasa admitted to Forbes Loihi wouldn’t work well with some deep learning models.
Finally, there’s considerable competition in the quest to develop new computer architectures specialized for machine learning. GPU vendors Nvidia and AMD have pivoted to take advantage of this newfound market and companies like Google and Microsoft are developing their own in-house solutions.
Intel, for its part, isn’t putting all its eggs in one basket. Last year it bought two companies building chips for specialized machine learning—Movidius and Nervana—and this was followed up with the $15 billion purchase of self-driving car chip- and camera-maker Mobileye.
And while the jury is still out on neuromorphic computing, it makes sense for a company eager to position itself as the AI chipmaker of the future to have its fingers in as many pies as possible. There are a growing number of voices suggesting that despite its undoubted power, deep learning alone will not allow us to imbue machines with the kind of adaptable, general intelligence humans possess.
What new approaches will get us there are hard to predict, but it’s entirely possible they will only work on hardware that closely mimics the one device we already know is capable of supporting this kind of intelligence—the human brain.
Image Credit: Intel Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431078 This Year’s Awesome Robot Stories From ...

Each week we scour the web for great articles and fascinating advances across our core topics, from AI to biotech and the brain. But robots have a special place in our hearts. This week, we took a look back at 2017 so far and unearthed a few favorite robots for your reading and viewing pleasure.
Tarzan the Swinging Robot Could Be the Future of FarmingMariella Moon | Engadget“Tarzan will be able to swing over crops using its 3D-printed claws and parallel guy-wires stretched over fields. It will then take measurements and pictures of each plant with its built-in camera while suspended…While it may take some time to achieve that goal, the researchers plan to start testing the robot soon.”
Grasping Robots Compete to Rule Amazon’s Warehouses Tom Simonite | Wired“Robots able to help with so-called picking tasks would boost Amazon’s efficiency—and make it much less reliant on human workers. It’s why the company has invited a motley crew of mechanical arms, grippers, suction cups—and their human handlers—to Nagoya, Japan, this week to show off their manipulation skills.”
Robots Learn to Speak Body LanguageAlyssa Pagano | IEEE Spectrum“One notable feature of the OpenPose system is that it can track not only a person’s head, torso, and limbs but also individual fingers. To do that, the researchers used CMU’s Panoptic Studio, a dome lined with 500 cameras, where they captured body poses at a variety of angles and then used those images to build a data set.”
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
How This Japanese Robotics Master Is Building Better, More Human AndroidsHarry McCracken | Fast Company“On the tech side, making a robot look and behave like a person involves everything from electronics to the silicone Ishiguro’s team uses to simulate skin. ‘We have a technology to precisely control pneumatic actuators,’ he says, noting, as an example of what they need to re-create, that ‘the human shoulder has four degrees of freedom.’”
Stock Media provided by Besjunior / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430686 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind’s AI Is Teaching Itself Parkour, and the Results Are AdorableJames Vincent | The Verge“The research explores how reinforcement learning (or RL) can be used to teach a computer to navigate unfamiliar and complex environments. It’s the sort of fundamental AI research that we’re now testing in virtual worlds, but that will one day help program robots that can navigate the stairs in your house.”
VIRTUAL REALITY
Now You Can Broadcast Facebook Live Videos From Virtual RealityDaniel Terdiman | Fast Company“The idea is fairly simple. Spaces allows up to four people—each of whom must have an Oculus Rift VR headset—to hang out together in VR. Together, they can talk, chat, draw, create new objects, watch 360-degree videos, share photos, and much more. And now, they can live-broadcast everything they do in Spaces, much the same way that any Facebook user can produce live video of real life and share it with the world.”
ROBOTICS
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
BIOTECH
Scientists Used CRISPR to Put a GIF Inside a Living Organism’s DNAEmily Mullin | MIT Technology Review“They delivered the GIF into the living bacteria in the form of five frames: images of a galloping horse and rider, taken by English photographer Eadweard Muybridge…The researchers were then able to retrieve the data by sequencing the bacterial DNA. They reconstructed the movie with 90 percent accuracy by reading the pixel nucleotide code.”
DIGITAL MEDIA
AI Creates Fake ObamaCharles Q. Choi | IEEE Spectrum“In the new study, the neural net learned what mouth shapes were linked to various sounds. The researchers took audio clips and dubbed them over the original sound files of a video. They next took mouth shapes that matched the new audio clips and grafted and blended them onto the video. Essentially, the researchers synthesized videos where Obama lip-synched words he said up to decades beforehand.”
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment