Tag Archives: central

#435056 How Researchers Used AI to Better ...

A few years back, DeepMind’s Demis Hassabis famously prophesized that AI and neuroscience will positively feed into each other in a “virtuous circle.” If realized, this would fundamentally expand our insight into intelligence, both machine and human.

We’ve already seen some proofs of concept, at least in the brain-to-AI direction. For example, memory replay, a biological mechanism that fortifies our memories during sleep, also boosted AI learning when abstractly appropriated into deep learning models. Reinforcement learning, loosely based on our motivation circuits, is now behind some of AI’s most powerful tools.

Hassabis is about to be proven right again.

Last week, two studies independently tapped into the power of ANNs to solve a 70-year-old neuroscience mystery: how does our visual system perceive reality?

The first, published in Cell, used generative networks to evolve DeepDream-like images that hyper-activate complex visual neurons in monkeys. These machine artworks are pure nightmare fuel to the human eye; but together, they revealed a fundamental “visual hieroglyph” that may form a basic rule for how we piece together visual stimuli to process sight into perception.

In the second study, a team used a deep ANN model—one thought to mimic biological vision—to synthesize new patterns tailored to control certain networks of visual neurons in the monkey brain. When directly shown to monkeys, the team found that the machine-generated artworks could reliably activate predicted populations of neurons. Future improved ANN models could allow even better control, giving neuroscientists a powerful noninvasive tool to study the brain. The work was published in Science.

The individual results, though fascinating, aren’t necessarily the point. Rather, they illustrate how scientists are now striving to complete the virtuous circle: tapping AI to probe natural intelligence. Vision is only the beginning—the tools can potentially be expanded into other sensory domains. And the more we understand about natural brains, the better we can engineer artificial ones.

It’s a “great example of leveraging artificial intelligence to study organic intelligence,” commented Dr. Roman Sandler at Kernel.co on Twitter.

Why Vision?
ANNs and biological vision have quite the history.

In the late 1950s, the legendary neuroscientist duo David Hubel and Torsten Wiesel became some of the first to use mathematical equations to understand how neurons in the brain work together.

In a series of experiments—many using cats—the team carefully dissected the structure and function of the visual cortex. Using myriads of images, they revealed that vision is processed in a hierarchy: neurons in “earlier” brain regions, those closer to the eyes, tend to activate when they “see” simple patterns such as lines. As we move deeper into the brain, from the early V1 to a nub located slightly behind our ears, the IT cortex, neurons increasingly respond to more complex or abstract patterns, including faces, animals, and objects. The discovery led some scientists to call certain IT neurons “Jennifer Aniston cells,” which fire in response to pictures of the actress regardless of lighting, angle, or haircut. That is, IT neurons somehow extract visual information into the “gist” of things.

That’s not trivial. The complex neural connections that lead to increasing abstraction of what we see into what we think we see—what we perceive—is a central question in machine vision: how can we teach machines to transform numbers encoding stimuli into dots, lines, and angles that eventually form “perceptions” and “gists”? The answer could transform self-driving cars, facial recognition, and other computer vision applications as they learn to better generalize.

Hubel and Wiesel’s Nobel-prize-winning studies heavily influenced the birth of ANNs and deep learning. Much of earlier ANN “feed-forward” model structures are based on our visual system; even today, the idea of increasing layers of abstraction—for perception or reasoning—guide computer scientists to build AI that can better generalize. The early romance between vision and deep learning is perhaps the bond that kicked off our current AI revolution.

It only seems fair that AI would feed back into vision neuroscience.

Hieroglyphs and Controllers
In the Cell study, a team led by Dr. Margaret Livingstone at Harvard Medical School tapped into generative networks to unravel IT neurons’ complex visual alphabet.

Scientists have long known that neurons in earlier visual regions (V1) tend to fire in response to “grating patches” oriented in certain ways. Using a limited set of these patches like letters, V1 neurons can “express a visual sentence” and represent any image, said Dr. Arash Afraz at the National Institute of Health, who was not involved in the study.

But how IT neurons operate remained a mystery. Here, the team used a combination of genetic algorithms and deep generative networks to “evolve” computer art for every studied neuron. In seven monkeys, the team implanted electrodes into various parts of the visual IT region so that they could monitor the activity of a single neuron.

The team showed each monkey an initial set of 40 images. They then picked the top 10 images that stimulated the highest neural activity, and married them to 30 new images to “evolve” the next generation of images. After 250 generations, the technique, XDREAM, generated a slew of images that mashed up contorted face-like shapes with lines, gratings, and abstract shapes.

This image shows the evolution of an optimum image for stimulating a visual neuron in a monkey. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“The evolved images look quite counter-intuitive,” explained Afraz. Some clearly show detailed structures that resemble natural images, while others show complex structures that can’t be characterized by our puny human brains.

This figure shows natural images (right) and images evolved by neurons in the inferotemporal cortex of a monkey (left). Image Credit: Ponce, Xiao, and Schade et al. – Cell.
“What started to emerge during each experiment were pictures that were reminiscent of shapes in the world but were not actual objects in the world,” said study author Carlos Ponce. “We were seeing something that was more like the language cells use with each other.”

This image was evolved by a neuron in the inferotemporal cortex of a monkey using AI. Image Credit: Ponce, Xiao, and Schade et al. – Cell.
Although IT neurons don’t seem to use a simple letter alphabet, it does rely on a vast array of characters like hieroglyphs or Chinese characters, “each loaded with more information,” said Afraz.

The adaptive nature of XDREAM turns it into a powerful tool to probe the inner workings of our brains—particularly for revealing discrepancies between biology and models.

The Science study, led by Dr. James DiCarlo at MIT, takes a similar approach. Using ANNs to generate new patterns and images, the team was able to selectively predict and independently control neuron populations in a high-level visual region called V4.

“So far, what has been done with these models is predicting what the neural responses would be to other stimuli that they have not seen before,” said study author Dr. Pouya Bashivan. “The main difference here is that we are going one step further and using the models to drive the neurons into desired states.”

It suggests that our current ANN models for visual computation “implicitly capture a great deal of visual knowledge” which we can’t really describe, but which the brain uses to turn vision information into perception, the authors said. By testing AI-generated images on biological vision, however, the team concluded that today’s ANNs have a degree of understanding and generalization. The results could potentially help engineer even more accurate ANN models of biological vision, which in turn could feed back into machine vision.

“One thing is clear already: Improved ANN models … have led to control of a high-level neural population that was previously out of reach,” the authors said. “The results presented here have likely only scratched the surface of what is possible with such implemented characterizations of the brain’s neural networks.”

To Afraz, the power of AI here is to find cracks in human perception—both our computational models of sensory processes, as well as our evolved biological software itself. AI can be used “as a perfect adversarial tool to discover design cracks” of IT, said Afraz, such as finding computer art that “fools” a neuron into thinking the object is something else.

“As artificial intelligence researchers develop models that work as well as the brain does—or even better—we will still need to understand which networks are more likely to behave safely and further human goals,” said Ponce. “More efficient AI can be grounded by knowledge of how the brain works.”

Image Credit: Sangoiri / Shutterstock.com Continue reading

Posted in Human Robots

#434194 Educating the Wise Cyborgs of the Future

When we think of wisdom, we often think of ancient philosophers, mystics, or spiritual leaders. Wisdom is associated with the past. Yet some intellectual leaders are challenging us to reconsider wisdom in the context of the technological evolution of the future.

With the rise of exponential technologies like virtual reality, big data, artificial intelligence, and robotics, people are gaining access to increasingly powerful tools. These tools are neither malevolent nor benevolent on their own; human values and decision-making influence how they are used.

In future-themed discussions we often focus on technological progress far more than on intellectual and moral advancements. In reality, the virtuous insights that future humans possess will be even more powerful than their technological tools.

Tom Lombardo and Ray Todd Blackwood are advocating for exactly this. In their interdisciplinary paper “Educating the Wise Cyborg of the Future,” they propose a new definition of wisdom—one that is relevant in the context of the future of humanity.

We Are Already Cyborgs
The core purpose of Lombardo and Blackwood’s paper is to explore revolutionary educational models that will prepare humans, soon-to-be-cyborgs, for the future. The idea of educating such “cyborgs” may sound like science fiction, but if you pay attention to yourself and the world around you, cyborgs came into being a long time ago.

Techno-philosophers like Jason Silva point out that our tech devices are an abstract form of brain-machine interfaces. We use smartphones to store and retrieve information, perform calculations, and communicate with each other. Our devices are an extension of our minds.

According to philosophers Andy Clark and David Chalmers’ theory of the extended mind, we use this technology to expand the boundaries of our minds. We use tools like machine learning to enhance our cognitive skills or powerful telescopes to enhance our visual reach. Such is how technology has become a part of our exoskeletons, allowing us to push beyond our biological limitations.

In other words, you are already a cyborg. You have been all along.

Such an abstract definition of cyborgs is both relevant and thought-provoking. But it won’t stay abstract for much longer. The past few years have seen remarkable developments in both the hardware and software of brain-machine interfaces. Experts are designing more intricate electrodes while programming better algorithms to interpret the neural signals. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate purely through brainwaves. Technologists like Ray Kurzweil believe that by 2030 we will connect the neocortex of our brains to the cloud via nanobots.

Given these trends, humans will continue to be increasingly cyborg-like. Our future schools may not necessarily educate people as we are today, but rather will be educating a new species of human-machine hybrid.

Wisdom-Based Education
Whether you take an abstract or literal definition of a cyborg, we need to completely revamp our educational models. Even if you don’t buy into the scenario where humans integrate powerful brain-machine interfaces into our minds, there is still a desperate need for wisdom-based education to equip current generations to tackle 21st-century issues.

With an emphasis on isolated subjects, standardized assessments, and content knowledge, our current educational models were designed for the industrial era, with the intended goal of creating masses of efficient factory workers—not to empower critical thinkers, innovators, or wise cyborgs.

Currently, the goal of higher education is to provide students with the degree that society tells them they need, and ostensibly to prepare them for the workforce. In contrast, Lombardo and Blackwood argue that wisdom should be the central goal of higher education, and they elaborate on how we can practically make this happen. Lombardo has developed a comprehensive two-year foundational education program for incoming university students aimed at the development of wisdom.

What does such an educational model look like? Lombardo and Blackwood break wisdom down into individual traits and capacities, each of which can be developed and measured independently or in combination with others. The authors lay out an expansive list of traits that can influence our decision-making as we strive to tackle global challenges and pave a more exciting future. These include big-picture thinking, curiosity, wonder, compassion, self-transcendence, love of learning, optimism, and courage.

As the authors point out, “given the complex and transforming nature of the world we live in, the development of wisdom provides a holistic, perspicacious, and ethically informed foundation for understanding the world, identifying its critical problems and positive opportunities, and constructively addressing its challenges.”

After all, many of the challenges we see in our world today boil down to out-dated ways of thinking, be they regressive mindsets, superficial value systems, or egocentric mindsets. The development of wisdom would immunize future societies against such debilitating values; imagine what our world would be like if wisdom was ingrained in all leaders and participating members of society.

The Wise Cyborg
Lombardo and Blackwood invite us to imagine how the wise cyborgs of the future would live their lives. What would happen if the powerful human-machine hybrids of tomorrow were also purpose-driven, compassionate, and ethical?

They would perceive the evolving digital world through a lens of wonder, awe, and curiosity. They would use digital information as a tool for problem-solving and a source of infinite knowledge. They would leverage immersive mediums like virtual reality to enhance creative expression and experimentation. They would continue to adapt and thrive in an unpredictable world of accelerating change.

Our media often depict a dystopian future for our species. It is worth considering a radically positive yet plausible scenario where instead of the machines taking over, we converge with them into wise cyborgs. This is just a glimpse of what is possible if we combine transcendent wisdom with powerful exponential technologies.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#433901 The SpiNNaker Supercomputer, Modeled ...

We’ve long used the brain as inspiration for computers, but the SpiNNaker supercomputer, switched on this month, is probably the closest we’ve come to recreating it in silicon. Now scientists hope to use the supercomputer to model the very thing that inspired its design.

The brain is the most complex machine in the known universe, but that complexity comes primarily from its architecture rather than the individual components that make it up. Its highly interconnected structure means that relatively simple messages exchanged between billions of individual neurons add up to carry out highly complex computations.

That’s the paradigm that has inspired the ‘Spiking Neural Network Architecture” (SpiNNaker) supercomputer at the University of Manchester in the UK. The project is the brainchild of Steve Furber, the designer of the original ARM processor. After a decade of development, a million-core version of the machine that will eventually be able to simulate up to a billion neurons was switched on earlier this month.

The idea of splitting computation into very small chunks and spreading them over many processors is already the leading approach to supercomputing. But even the most parallel systems require a lot of communication, and messages may have to pack in a lot of information, such as the task that needs to be completed or the data that needs to be processed.

In contrast, messages in the brain consist of simple electrochemical impulses, or spikes, passed between neurons, with information encoded primarily in the timing or rate of those spikes (which is more important is a topic of debate among neuroscientists). Each neuron is connected to thousands of others via synapses, and complex computation relies on how spikes cascade through these highly-connected networks.

The SpiNNaker machine attempts to replicate this using a model called Address Event Representation. Each of the million cores can simulate roughly a million synapses, so depending on the model, 1,000 neurons with 1,000 connections or 100 neurons with 10,000 connections. Information is encoded in the timing of spikes and the identity of the neuron sending them. When a neuron is activated it broadcasts a tiny packet of data that contains its address, and spike timing is implicitly conveyed.

By modeling their machine on the architecture of the brain, the researchers hope to be able to simulate more biological neurons in real time than any other machine on the planet. The project is funded by the European Human Brain Project, a ten-year science mega-project aimed at bringing together neuroscientists and computer scientists to understand the brain, and researchers will be able to apply for time on the machine to run their simulations.

Importantly, it’s possible to implement various different neuronal models on the machine. The operation of neurons involves a variety of complex biological processes, and it’s still unclear whether this complexity is an artefact of evolution or central to the brain’s ability to process information. The ability to simulate up to a billion simple neurons or millions of more complex ones on the same machine should help to slowly tease out the answer.

Even at a billion neurons, that still only represents about one percent of the human brain, so it’s still going to be limited to investigating isolated networks of neurons. But the previous 500,000-core machine has already been used to do useful simulations of the Basal Ganglia—an area affected in Parkinson’s disease—and an outer layer of the brain that processes sensory information.

The full-scale supercomputer will make it possible to study even larger networks previously out of reach, which could lead to breakthroughs in our understanding of both the healthy and unhealthy functioning of the brain.

And while neurological simulation is the main goal for the machine, it could also provide a useful research tool for roboticists. Previous research has already shown a small board of SpiNNaker chips can be used to control a simple wheeled robot, but Furber thinks the SpiNNaker supercomputer could also be used to run large-scale networks that can process sensory input and generate motor output in real time and at low power.

That low power operation is of particular promise for robotics. The brain is dramatically more power-efficient than conventional supercomputers, and by borrowing from its principles SpiNNaker has managed to capture some of that efficiency. That could be important for running mobile robotic platforms that need to carry their own juice around.

This ability to run complex neural networks at low power has been one of the main commercial drivers for so-called neuromorphic computing devices that are physically modeled on the brain, such as IBM’s TrueNorth chip and Intel’s Loihi. The hope is that complex artificial intelligence applications normally run in massive data centers could be run on edge devices like smartphones, cars, and robots.

But these devices, including SpiNNaker, operate very differently from the leading AI approaches, and its not clear how easy it would be to transfer between the two. The need to adopt an entirely new programming paradigm is likely to limit widespread adoption, and the lack of commercial traction for the aforementioned devices seems to back that up.

At the same time, though, this new paradigm could potentially lead to dramatic breakthroughs in massively parallel computing. SpiNNaker overturns many of the foundational principles of how supercomputers work that make it much more flexible and error-tolerant.

For now, the machine is likely to be firmly focused on accelerating our understanding of how the brain works. But its designers also hope those findings could in turn point the way to more efficient and powerful approaches to computing.

Image Credit: Adrian Grosu / Shutterstock.com Continue reading

Posted in Human Robots

#433892 The Spatial Web Will Map Our 3D ...

The boundaries between digital and physical space are disappearing at a breakneck pace. What was once static and boring is becoming dynamic and magical.

For all of human history, looking at the world through our eyes was the same experience for everyone. Beyond the bounds of an over-active imagination, what you see is the same as what I see.

But all of this is about to change. Over the next two to five years, the world around us is about to light up with layer upon layer of rich, fun, meaningful, engaging, and dynamic data. Data you can see and interact with.

This magical future ahead is called the Spatial Web and will transform every aspect of our lives, from retail and advertising, to work and education, to entertainment and social interaction.

Massive change is underway as a result of a series of converging technologies, from 5G global networks and ubiquitous artificial intelligence, to 30+ billion connected devices (known as the IoT), each of which will generate scores of real-world data every second, everywhere.

The current AI explosion will make everything smart, autonomous, and self-programming. Blockchain and cloud-enabled services will support a secure data layer, putting data back in the hands of users and allowing us to build complex rule-based infrastructure in tomorrow’s virtual worlds.

And with the rise of online-merge-offline (OMO) environments, two-dimensional screens will no longer serve as our exclusive portal to the web. Instead, virtual and augmented reality eyewear will allow us to interface with a digitally-mapped world, richly layered with visual data.

Welcome to the Spatial Web. Over the next few months, I’ll be doing a deep dive into the Spatial Web (a.k.a. Web 3.0), covering what it is, how it works, and its vast implications across industries, from real estate and healthcare to entertainment and the future of work. In this blog, I’ll discuss the what, how, and why of Web 3.0—humanity’s first major foray into our virtual-physical hybrid selves (BTW, this year at Abundance360, we’ll be doing a deep dive into the Spatial Web with the leaders of HTC, Magic Leap, and High-Fidelity).

Let’s dive in.

What is the Spatial Web?
While we humans exist in three dimensions, our web today is flat.

The web was designed for shared information, absorbed through a flat screen. But as proliferating sensors, ubiquitous AI, and interconnected networks blur the lines between our physical and online worlds, we need a spatial web to help us digitally map a three-dimensional world.

To put Web 3.0 in context, let’s take a trip down memory lane. In the late 1980s, the newly-birthed world wide web consisted of static web pages and one-way information—a monumental system of publishing and linking information unlike any unified data system before it. To connect, we had to dial up through unstable modems and struggle through insufferably slow connection speeds.

But emerging from this revolutionary (albeit non-interactive) infodump, Web 2.0 has connected the planet more in one decade than empires did in millennia.

Granting democratized participation through newly interactive sites and applications, today’s web era has turbocharged information-sharing and created ripple effects of scientific discovery, economic growth, and technological progress on an unprecedented scale.

We’ve seen the explosion of social networking sites, wikis, and online collaboration platforms. Consumers have become creators; physically isolated users have been handed a global microphone; and entrepreneurs can now access billions of potential customers.

But if Web 2.0 took the world by storm, the Spatial Web emerging today will leave it in the dust.

While there’s no clear consensus about its definition, the Spatial Web refers to a computing environment that exists in three-dimensional space—a twinning of real and virtual realities—enabled via billions of connected devices and accessed through the interfaces of virtual and augmented reality.

In this way, the Spatial Web will enable us to both build a twin of our physical reality in the virtual realm and bring the digital into our real environments.

It’s the next era of web-like technologies:

Spatial computing technologies, like augmented and virtual reality;
Physical computing technologies, like IoT and robotic sensors;
And decentralized computing: both blockchain—which enables greater security and data authentication—and edge computing, which pushes computing power to where it’s most needed, speeding everything up.

Geared with natural language search, data mining, machine learning, and AI recommendation agents, the Spatial Web is a growing expanse of services and information, navigable with the use of ever-more-sophisticated AI assistants and revolutionary new interfaces.

Where Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and social media on two-dimensional screens. But converging technologies are quickly transcending the laptop, and will even disrupt the smartphone in the next decade.

With the rise of wearables, smart glasses, AR / VR interfaces, and the IoT, the Spatial Web will integrate seamlessly into our physical environment, overlaying every conversation, every road, every object, conference room, and classroom with intuitively-presented data and AI-aided interaction.

Think: the Oasis in Ready Player One, where anyone can create digital personas, build and invest in smart assets, do business, complete effortless peer-to-peer transactions, and collect real estate in a virtual world.

Or imagine a virtual replica or “digital twin” of your office, each conference room authenticated on the blockchain, requiring a cryptographic key for entry.

As I’ve discussed with my good friend and “VR guru” Philip Rosedale, I’m absolutely clear that in the not-too-distant future, every physical element of every building in the world is going to be fully digitized, existing as a virtual incarnation or even as N number of these. “Meet me at the top of the Empire State Building?” “Sure, which one?”

This digitization of life means that suddenly every piece of information can become spatial, every environment can be smarter by virtue of AI, and every data point about me and my assets—both virtual and physical—can be reliably stored, secured, enhanced, and monetized.

In essence, the Spatial Web lets us interface with digitally-enhanced versions of our physical environment and build out entirely fictional virtual worlds—capable of running simulations, supporting entire economies, and even birthing new political systems.

But while I’ll get into the weeds of different use cases next week, let’s first concretize.

How Does It Work?
Let’s start with the stack. In the PC days, we had a database accompanied by a program that could ingest that data and present it to us as digestible information on a screen.

Then, in the early days of the web, data migrated to servers. Information was fed through a website, with which you would interface via a browser—whether Mosaic or Mozilla.

And then came the cloud.

Resident at either the edge of the cloud or on your phone, today’s rapidly proliferating apps now allow us to interact with previously read-only data, interfacing through a smartphone. But as Siri and Alexa have brought us verbal interfaces, AI-geared phone cameras can now determine your identity, and sensors are beginning to read our gestures.

And now we’re not only looking at our screens but through them, as the convergence of AI and AR begins to digitally populate our physical worlds.

While Pokémon Go sent millions of mobile game-players on virtual treasure hunts, IKEA is just one of the many companies letting you map virtual furniture within your physical home—simulating everything from cabinets to entire kitchens. No longer the one-sided recipients, we’re beginning to see through sensors, creatively inserting digital content in our everyday environments.

Let’s take a look at how the latest incarnation might work. In this new Web 3.0 stack, my personal AI would act as an intermediary, accessing public or privately-authorized data through the blockchain on my behalf, and then feed it through an interface layer composed of everything from my VR headset, to numerous wearables, to my smart environment (IoT-connected devices or even in-home robots).

But as we attempt to build a smart world with smart infrastructure, smart supply chains and smart everything else, we need a set of basic standards with addresses for people, places, and things. Just like our web today relies on the Internet Protocol (TCP/IP) and other infrastructure, by which your computer is addressed and data packets are transferred, we need infrastructure for the Spatial Web.

And a select group of players is already stepping in to fill this void. Proposing new structural designs for Web 3.0, some are attempting to evolve today’s web model from text-based web pages in 2D to three-dimensional AR and VR web experiences located in both digitally-mapped physical worlds and newly-created virtual ones.

With a spatial programming language analogous to HTML, imagine building a linkable address for any physical or virtual space, granting it a format that then makes it interchangeable and interoperable with all other spaces.

But it doesn’t stop there.

As soon as we populate a virtual room with content, we then need to encode who sees it, who can buy it, who can move it…

And the Spatial Web’s eventual governing system (for posting content on a centralized grid) would allow us to address everything from the room you’re sitting in, to the chair on the other side of the table, to the building across the street.

Just as we have a DNS for the web and the purchasing of web domains, once we give addresses to spaces (akin to granting URLs), we then have the ability to identify and visit addressable locations, physical objects, individuals, or pieces of digital content in cyberspace.

And these not only apply to virtual worlds, but to the real world itself. As new mapping technologies emerge, we can now map rooms, objects, and large-scale environments into virtual space with increasing accuracy.

We might then dictate who gets to move your coffee mug in a virtual conference room, or when a team gets to use the room itself. Rules and permissions would be set in the grid, decentralized governance systems, or in the application layer.

Taken one step further, imagine then monetizing smart spaces and smart assets. If you have booked the virtual conference room, perhaps you’ll let me pay you 0.25 BTC to let me use it instead?

But given the Spatial Web’s enormous technological complexity, what’s allowing it to emerge now?

Why Is It Happening Now?
While countless entrepreneurs have already started harnessing blockchain technologies to build decentralized apps (or dApps), two major developments are allowing today’s birth of Web 3.0:

High-resolution wireless VR/AR headsets are finally catapulting virtual and augmented reality out of a prolonged winter.

The International Data Corporation (IDC) predicts the VR and AR headset market will reach 65.9 million units by 2022. Already in the next 18 months, 2 billion devices will be enabled with AR. And tech giants across the board have long begun investing heavy sums.

In early 2019, HTC is releasing the VIVE Focus, a wireless self-contained VR headset. At the same time, Facebook is charging ahead with its Project Santa Cruz—the Oculus division’s next-generation standalone, wireless VR headset. And Magic Leap has finally rolled out its long-awaited Magic Leap One mixed reality headset.

Mass deployment of 5G will drive 10 to 100-gigabit connection speeds in the next 6 years, matching hardware progress with the needed speed to create virtual worlds.

We’ve already seen tremendous leaps in display technology. But as connectivity speeds converge with accelerating GPUs, we’ll start to experience seamless VR and AR interfaces with ever-expanding virtual worlds.

And with such democratizing speeds, every user will be able to develop in VR.

But accompanying these two catalysts is also an important shift towards the decentralized web and a demand for user-controlled data.

Converging technologies, from immutable ledgers and blockchain to machine learning, are now enabling the more direct, decentralized use of web applications and creation of user content. With no central point of control, middlemen are removed from the equation and anyone can create an address, independently interacting with the network.

Enabled by a permission-less blockchain, any user—regardless of birthplace, gender, ethnicity, wealth, or citizenship—would thus be able to establish digital assets and transfer them seamlessly, granting us a more democratized Internet.

And with data stored on distributed nodes, this also means no single point of failure. One could have multiple backups, accessible only with digital authorization, leaving users immune to any single server failure.

Implications Abound–What’s Next…
With a newly-built stack and an interface built from numerous converging technologies, the Spatial Web will transform every facet of our everyday lives—from the way we organize and access our data, to our social and business interactions, to the way we train employees and educate our children.

We’re about to start spending more time in the virtual world than ever before. Beyond entertainment or gameplay, our livelihoods, work, and even personal decisions are already becoming mediated by a web electrified with AI and newly-emerging interfaces.

In our next blog on the Spatial Web, I’ll do a deep dive into the myriad industry implications of Web 3.0, offering tangible use cases across sectors.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘on ramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Comeback01 / Shutterstock.com Continue reading

Posted in Human Robots

#433828 Using Big Data to Give Patients Control ...

Big data, personalized medicine, artificial intelligence. String these three buzzphrases together, and what do you have?

A system that may revolutionize the future of healthcare, by bringing sophisticated health data directly to patients for them to ponder, digest, and act upon—and potentially stop diseases in their tracks.

At Singularity University’s Exponential Medicine conference in San Diego this week, Dr. Ran Balicer, director of the Clalit Research Institute in Israel, painted a futuristic picture of how big data can merge with personalized healthcare into an app-based system in which the patient is in control.

Dr. Ran Balicer at Exponential Medicine
Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: “Within six hours, you’re going to have a heart attack. So why don’t you come into the clinic and we can fix that.” Crisis averted.

Following the treatment, you’re at home monitoring your biomarkers, lab test results, and other health information through an app with a clean, beautiful user interface. Within the app, you can observe how various health-influencing life habits—smoking, drinking, insufficient sleep—influence your chance of future cardiovascular disease risks by toggling their levels up or down.

There’s more: you can also set a health goal within the app—for example, stop smoking—which automatically informs your physician. The app will then suggest pharmaceuticals to help you ditch the nicotine and automatically sends the prescription to your local drug store. You’ll also immediately find a list of nearby support groups that can help you reach your health goal.

With this hefty dose of AI, you’re in charge of your health—in fact, probably more so than under current healthcare systems.

Sound fantastical? In fact, this type of preemptive care is already being provided in some countries, including Israel, at a massive scale, said Balicer. By mining datasets with deep learning and other powerful AI tools, we can predict the future—and put it into the hands of patients.

The Israeli Advantage
In order to apply big data approaches to medicine, you first need a giant database.

Israel is ahead of the game in this regard. With decades of electronic health records aggregated within a central warehouse, Israel offers a wealth of health-related data on the scale of millions of people and billions of data points. The data is incredibly multiplex, covering lab tests, drugs, hospital admissions, medical procedures, and more.

One of Balicer’s early successes was an algorithm that predicts diabetes, which allowed the team to notify physicians to target their care. Clalit has also been busy digging into data that predicts winter pneumonia, osteoporosis, and a long list of other preventable diseases.

So far, Balicer’s predictive health system has only been tested on a pilot group of patients, but he is expecting to roll out the platform to all patients in the database in the next few months.

Truly Personalized Medicine
To Balicer, whatever a machine can do better, it should be welcomed to do. AI diagnosticians have already enjoyed plenty of successes—but their collaboration remains mostly with physicians, at a point in time when the patient is already ill.

A particularly powerful use of AI in medicine is to bring insights and trends directly to the patient, such that they can take control over their own health and medical care.

For example, take the problem of tailored drug dosing. Current drug doses are based on average results conducted during clinical trials—the dosing is not tailored for any specific patient’s genetic and health makeup. But what if a doctor had already seen millions of other patients similar to your case, and could generate dosing recommendations more relevant to you based on that particular group of patients?

Such personalized recommendations are beyond the ability of any single human doctor. But with the help of AI, which can quickly process massive datasets to find similarities, doctors may soon be able to prescribe individually-tailored medications.

Tailored treatment doesn’t stop there. Another issue with pharmaceuticals and treatment regimes is that they often come with side effects: potentially health-threatening reactions that may, or may not, happen to you based on your biometrics.

Back in 2017, the New England Journal of Medicine launched the SPRINT Data Analysis Challenge, which urged physicians and data analysts to identify novel clinical findings using shared clinical trial data.

Working with Dr. Noa Dagan at the Clalit Research Institute, Balicer and team developed an algorithm that recommends whether or not a patient receives a particularly intensive treatment regime for hypertension.

Rather than simply looking at one outcome—normalized blood pressure—the algorithm takes into account an individual’s specific characteristics, laying out the treatment’s predicted benefits and harms for a particular patient.

“We built thousands of models for each patient to comprehensively understand the impact of the treatment for the individual; for example, a reduced risk for stroke and cardiovascular-related deaths could be accompanied by an increase in serious renal failure,” said Balicer. “This approach allows a truly personalized balance—allowing patients and their physicians to ultimately decide if the risks of the treatment are worth the benefits.”

This is already personalized medicine at its finest. But Balicer didn’t stop there.

We are not the sum of our biologics and medical stats, he said. A truly personalized approach needs to take a patient’s needs and goals and the sacrifices and tradeoffs they’re willing to make into account, rather than having the physician make decisions for them.

Balicer’s preventative system adds this layer of complexity by giving weights to different outcomes based on patients’ input of their own health goals. Rather than blindly following big data, the system holistically integrates the patient’s opinion to make recommendations.

Balicer’s system is just one example of how AI can truly transform personalized health care. The next big challenge is to work with physicians to further optimize these systems, in a way that doctors can easily integrate them into their workflow and embrace the technology.

“Health systems will not be replaced by algorithms, rest assured,” concluded Balicer, “but health systems that don’t use algorithms will be replaced by those that do.”

Image Credit: Magic mine / Shutterstock.com Continue reading

Posted in Human Robots