Tag Archives: california

#433474 How to Feed Global Demand for ...

“You really can’t justify tuna in Chicago as a source of sustenance.” That’s according to Dr. Sylvia Earle, a National Geographic Society Explorer who was the first female chief scientist at NOAA. She came to the Good Food Institute’s Good Food Conference to deliver a call to action around global food security, agriculture, environmental protection, and the future of consumer choice.

It seems like all options should be on the table to feed an exploding population threatened by climate change. But Dr. Earle, who is faculty at Singularity University, drew a sharp distinction between seafood for sustenance versus seafood as a choice. “There is this widespread claim that we must take large numbers of wildlife from the sea in order to have food security.”

A few minutes later, Dr. Earle directly addressed those of us in the audience. “We know the value of a dead fish,” she said. That’s market price. “But what is the value of a live fish in the ocean?”

That’s when my mind blew open. What is the value—or put another way, the cost—of using the ocean as a major source of protein for humans? How do you put a number on that? Are we talking about dollars and cents, or about something far larger?

Dr. Liz Specht of the Good Food Institute drew the audience’s attention to a strange imbalance. Currently, about half of the yearly global catch of seafood comes from aquaculture. That means that the other half is wild caught. It’s hard to imagine half of your meat coming directly from the forests and the plains, isn’t it? And yet half of the world’s seafood comes from direct harvesting of the oceans, by way of massive overfishing, a terrible toll from bycatch, a widespread lack of regulation and enforcement, and even human rights violations such as slavery.

The search for solutions is on, from both within the fishing industry and from external agencies such as governments and philanthropists. Could there be another way?

Makers of plant-based seafood and clean seafood think they know how to feed the global demand for seafood without harming the ocean. These companies are part of a larger movement harnessing technology to reduce our reliance on wild and domesticated animals—and all the environmental, economic, and ethical issues that come with it.

Producers of plant-based seafood (20 or so currently) are working to capture the taste, texture, and nutrition of conventional seafood without the limitations of geography or the health of a local marine population. Like with plant-based meat, makers of plant-based seafood are harnessing food science and advances in chemistry, biology, and engineering to make great food. The industry’s strategy? Start with what the consumer wants, and then figure out how to achieve that great taste through technology.

So how does plant-based seafood taste? Pretty good, as it turns out. (The biggest benefit of a food-oriented conference is that your mouth is always full!)

I sampled “tuna” salad made from Good Catch Food’s fish-free tuna, which is sourced from legumes; the texture was nearly indistinguishable from that of flaked albacore tuna, and there was no lingering fishy taste to overpower my next bite. In a blind taste test, I probably wouldn’t have known that I was eating a plant-based seafood alternative. Next I reached for Ocean Hugger Food’s Ahimi, a tomato-based alternative to raw tuna. I adore Hawaiian poke, so I was pleasantly surprised when my Ahimi-based poke captured the bite of ahi tuna. It wasn’t quite as delightfully fatty as raw tuna, but with wild tuna populations struggling to recover from a 97% decline in numbers from 40 years ago, Ahimi is a giant stride in the right direction.

These plant-based alternatives aren’t the only game in town, however.

The clean meat industry, which has also been called “cultured meat” or “cellular agriculture,” isn’t seeking to lure consumers away from animal protein. Instead, cells are sampled from live animals and grown in bioreactors—meaning that no animal is slaughtered to produce real meat.

Clean seafood is poised to piggyback off platforms developed for clean meat; growing fish cells in the lab should rely on the same processes as growing meat cells. I know of four companies currently focusing on seafood (Finless Foods, Wild Type, BlueNalu, and Seafuture Sustainable Biotech), and a few more are likely to emerge from stealth mode soon.

Importantly, there’s likely not much difference between growing clean seafood from the top or the bottom of the food chain. Tuna, for example, are top predators that must grow for at least 10 years before they’re suitable as food. Each year, a tuna consumes thousands of pounds of other fish, shellfish, and plankton. That “long tail of groceries,” said Dr. Earle, “is a pretty expensive choice.” Excitingly, clean tuna would “level the trophic playing field,” as Dr. Specht pointed out.

All this is only the beginning of what might be possible.

Combining synthetic biology with clean meat and seafood means that future products could be personalized for individual taste preferences or health needs, by reprogramming the DNA of the cells in the lab. Industries such as bioremediation and biofuels likely have a lot to teach us about sourcing new ingredients and flavors from algae and marine plants. By harnessing rapid advances in automation, robotics, sensors, machine vision, and other big-data analytics, the manufacturing and supply chains for clean seafood could be remarkably safe and robust. Clean seafood would be just that: clean, without pathogens, parasites, or the plastic threatening to fill our oceans, meaning that you could enjoy it raw.

What about price? Dr. Mark Post, a pioneer in clean meat who is also faculty at Singularity University, estimated that 80% of clean-meat production costs come from the expensive medium in which cells are grown—and some ingredients in the medium are themselves sourced from animals, which misses the point of clean meat. Plus, to grow a whole cut of food, like a fish fillet, the cells need to be coaxed into a complex 3D structure with various cell types like muscle cells and fat cells. These two technical challenges must be solved before clean meat and seafood give consumers the experience they want, at the price they want.

In this respect clean seafood has an unusual edge. Most of what we know about growing animal cells in the lab comes from the research and biomedical industries (from tissue engineering, for example)—but growing cells to replace an organ has different constraints than growing cells for food. The link between clean seafood and biomedicine is less direct, empowering innovators to throw out dogma and find novel reagents, protocols, and equipment to grow seafood that captures the tastes, textures, smells, and overall experience of dining by the ocean.

Asked to predict when we’ll be seeing clean seafood in the grocery store, Lou Cooperhouse the CEO of BlueNalu, explained that the challenges aren’t only in the lab: marketing, sales, distribution, and communication with consumers are all critical. As Niya Gupta, the founder of Fork & Goode, said, “The question isn’t ‘can we do it’, but ‘can we sell it’?”

The good news is that the clean meat and seafood industry is highly collaborative; there are at least two dozen companies in the space, and they’re all talking to each other. “This is an ecosystem,” said Dr. Uma Valeti, the co-founder of Memphis Meats. “We’re not competing with each other.” It will likely be at least a decade before science, business, and regulation enable clean meat and seafood to routinely appear on restaurant menus, let alone market shelves.

Until then, think carefully about your food choices. Meditate on Dr. Earle’s question: “What is the real cost of that piece of halibut?” Or chew on this from Dr. Ricardo San Martin, of the Sutardja Center at the University of California, Berkeley: “Food is a system of meanings, not an object.” What are you saying when you choose your food, about your priorities and your values and how you want the future to look? Do you think about animal welfare? Most ethical regulations don’t extend to marine life, and if you don’t think that ocean creatures feel pain, consider the lobster.

Seafood is largely an acquired taste, since most of us don’t live near the water. Imagine a future in which children grow up loving the taste of delicious seafood but without hurting a living animal, the ocean, or the global environment.

Do more than imagine. As Dr. Earle urged us, “Convince the public at large that this is a really cool idea.”

Widely available
Medium availability

Ahimi (Ocean Hugger)
New Wave Foods

Sophie’s Kitchen
Cedar Lake
To-funa Fish

SoFine Foods

Vegetarian Plus
Good Catch

Hungry Planet

Loma Linda
Heritage Health Food
Terramino Foods

The Vegetarian Butcher
May Wah


Table based on Figure 5 of the report “An Ocean of Opportunity: Plant-based and clean seafood for sustainable oceans without sacrifice,” from The Good Food Institute.

Image Credit: Tono Balaguer / Shutterstock.com Continue reading

Posted in Human Robots

#433288 The New AI Tech Turning Heads in Video ...

A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”

An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.

The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.

In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.

The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.

“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”

AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.

In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.

A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.

A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.

The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.

Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.

“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.

Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.

To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.

The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.

“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.

Image Credit: Tancha / Shutterstock.com Continue reading

Posted in Human Robots

#432891 This Week’s Awesome Stories From ...

Elon Musk Presents His Tunnel Vision to the People of LA
Jack Stewart and Aarian Marshall | Wired
“Now, Musk wants to build this new, 2.1-mile tunnel, near LA’s Sepulveda pass. It’s all part of his broader vision of a sprawling network that could take riders from Sherman Oaks in the north to Long Beach Airport in the south, Santa Monica in the west to Dodger Stadium in the east—without all that troublesome traffic.”

Feel What This Robot Feels Through Tactile Expressions
Evan Ackerman | IEEE Spectrum
“Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, ‘Don’t touch me!’”

In Virtual Reality, How Much Body Do You Need?
Steph Yin | The New York Times
“In a paper published Tuesday in Scientific Reports, they showed that animating virtual hands and feet alone is enough to make people feel their sense of body drift toward an invisible avatar. Their work fits into a corpus of research on illusory body ownership, which has challenged understandings of perception and contributed to therapies like treating pain for amputees who experience phantom limb.”

How Graphene and Gold Could Help Us Test Drugs and Monitor Cancer
Angela Chen | The Verge
“In today’s study, scientists learned to precisely control the amount of electricity graphene generates by changing how much light they shine on the material. When they grew heart cells on the graphene, they could manipulate the cells too, says study co-author Alex Savtchenko, a physicist at the University of California, San Diego. They could make it beat 1.5 times faster, three times faster, 10 times faster, or whatever they needed.”

Robotic Noses Could Be the Future of Disaster Rescue—If They Can Outsniff Search Dogs
Eleanor Cummins | Popular Science
“While canine units are a tried and fairly true method for identifying people trapped in the wreckage of a disaster, analytical chemists have for years been working in the lab to create a robotic alternative. A synthetic sniffer, they argue, could potentially prove to be just as or even more reliable than a dog, more resilient in the face of external pressures like heat and humidity, and infinitely more portable.”

Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots