Tag Archives: both

#433770 Will Tech Make Insurance Obsolete in the ...

We profit from it, we fear it, and we find it impossibly hard to quantify: risk.

While not the sexiest of industries, insurance can be a life-saving protector, pooling everyone’s premiums to safeguard against some of our greatest, most unexpected losses.

One of the most profitable in the world, the insurance industry exceeded $1.2 trillion in annual revenue since 2011 in the US alone.

But risk is becoming predictable. And insurance is getting disrupted fast.

By 2025, we’ll be living in a trillion-sensor economy. And as we enter a world where everything is measured all the time, we’ll start to transition from protecting against damages to preventing them in the first place.

But what happens to health insurance when Big Brother is always watching? Do rates go up when you sneak a cigarette? Do they go down when you eat your vegetables?

And what happens to auto insurance when most cars are autonomous? Or life insurance when the human lifespan doubles?

For that matter, what happens to insurance brokers when blockchain makes them irrelevant?

In this article, I’ll be discussing four key transformations:

Sensors and AI replacing your traditional broker
Blockchain
The ecosystem approach
IoT and insurance connectivity

Let’s dive in.

AI and the Trillion-Sensor Economy
As sensors continue to proliferate across every context—from smart infrastructure to millions of connected home devices to medicine—smart environments will allow us to ask any question, anytime, anywhere.

And as I often explain, once your AI has access to this treasure trove of ubiquitous sensor data in real time, it will be the quality of your questions that make or break your business.

But perhaps the most exciting insurance application of AI’s convergence with sensors is in healthcare. Tremendous advances in genetic screening are empowering us with predictive knowledge about our long-term health risks.

Leading the charge in genome sequencing, Illumina predicts that in a matter of years, decoding the full human genome will drop to $100, taking merely one hour to complete. Other companies are racing to get you sequences faster and cheaper.

Adopting an ecosystem approach, incumbent insurers and insurtech firms will soon be able to collaborate to provide risk-minimizing services in the health sector. Using sensor data and AI-driven personalized recommendations, insurance partnerships could keep consumers healthy, dramatically reducing the cost of healthcare.

Some fear that information asymmetry will allow consumers to learn of their health risks and leave insurers in the dark. However, both parties could benefit if insurers become part of the screening process.

A remarkable example of this is Gilad Meiri’s company, Neura AI. Aiming to predict health patterns, Neura has developed machine learning algorithms that analyze data from all of a user’s connected devices (sometimes from up to 54 apps!).

Neura predicts a user’s behavior and draws staggering insights about consumers’ health risks. Meiri soon began selling his personal risk assessment tool to insurers, who could then help insured customers mitigate long-term health risks.

But artificial intelligence will impact far more than just health insurance.

In October of 2016, a claim was submitted to Lemonade, the world’s first peer-to-peer insurance company. Rather than being processed by a human, every step in this claim resolution chain—from initial triage through fraud mitigation through final payment—was handled by an AI.

This transaction marks the first time an AI has processed an insurance claim. And it won’t be the last. A traditional human-processed claim takes 40 days to pay out. In Lemonade’s case, payment was transferred within three seconds.

However, Lemonade’s achievement only marks a starting point. Over the course of the next decade, nearly every facet of the insurance industry will undergo a similarly massive transformation.

New business models like peer-to-peer insurance are replacing traditional brokerage relationships, while AI and blockchain pairings significantly reduce the layers of bureaucracy required (with each layer getting a cut) for traditional insurance.

Consider Juniper, a startup that scrapes social media to build your risk assessment, subsequently asking you 12 questions via an iPhone app. Geared with advanced analytics, the platform can generate a million-dollar life insurance policy, approved in less than five minutes.

But what’s keeping all your data from unwanted hands?

Blockchain Building Trust
Current distrust in centralized financial services has led to staggering rates of underinsurance. Add to this fear of poor data and privacy protection, particularly in the wake of 2017’s widespread cybercriminal hacks.

Enabling secure storage and transfer of personal data, blockchain holds remarkable promise against the fraudulent activity that often plagues insurance firms.

The centralized model of insurance companies and other organizations is becoming redundant. Developing blockchain-based solutions for capital markets, Symbiont develops smart contracts to execute payments with little to no human involvement.

But distributed ledger technology (DLT) is enabling far more than just smart contracts.

Also targeting insurance is Tradle, leveraging blockchain for its proclaimed goal of “building a trust provisioning network.” Built around “know-your-customer” (KYC) data, Tradle aims to verify KYC data so that it can be securely forwarded to other firms without any further verification.

By requiring a certain number of parties to reuse pre-verified data, the platform makes your data much less vulnerable to hacking and allows you to keep it on a personal device. Only its verification—let’s say of a transaction or medical exam—is registered in the blockchain.

As insurance data grow increasingly decentralized, key insurance players will experience more and more pressure to adopt an ecosystem approach.

The Ecosystem Approach
Just as exponential technologies converge to provide new services, exponential businesses must combine the strengths of different sectors to expand traditional product lines.

By partnering with platform-based insurtech firms, forward-thinking insurers will no longer serve only as reactive policy-providers, but provide risk-mitigating services as well.

Especially as digital technologies demonetize security services—think autonomous vehicles—insurers must create new value chains and span more product categories.

For instance, France’s multinational AXA recently partnered with Alibaba and Ant Financial Services to sell a varied range of insurance products on Alibaba’s global e-commerce platform at the click of a button.

Building another ecosystem, Alibaba has also collaborated with Ping An Insurance and Tencent to create ZhongAn Online Property and Casualty Insurance—China’s first internet-only insurer, offering over 300 products. Now with a multibillion-dollar valuation, Zhong An has generated about half its business from selling shipping return insurance to Alibaba consumers.

But it doesn’t stop there. Insurers that participate in digital ecosystems can now sell risk-mitigating services that prevent damage before it occurs.

Imagine a corporate manufacturer whose sensors collect data on environmental factors affecting crop yield in an agricultural community. With the backing of investors and advanced risk analytics, such a manufacturer could sell crop insurance to farmers. By implementing an automated, AI-driven UI, they could automatically make payments when sensors detect weather damage to crops.

Now let’s apply this concept to your house, your car, your health insurance.

What’s stopping insurers from partnering with third-party IoT platforms to predict fires, collisions, chronic heart disease—and then empowering the consumer with preventive services?

This brings us to the powerful field of IoT.

Internet of Things and Insurance Connectivity
Leap ahead a few years. With a centralized hub like Echo, your smart home protects itself with a network of sensors. While gone, you’ve left on a gas burner and your internet-connected stove notifies you via a home app.

Better yet, home sensors monitoring heat and humidity levels run this data through an AI, which then remotely controls heating, humidity levels, and other connected devices based on historical data patterns and fire risk factors.

Several firms are already working toward this reality.

AXA plans to one day cooperate with a centralized home hub whereby remote monitoring will collect data for future analysis and detect abnormalities.

With remote monitoring and app-centralized control for users, MonAXA is aimed at customizing insurance bundles. These would reflect exact security features embedded in smart homes.

Wouldn’t you prefer not to have to rely on insurance after a burglary? With digital ecosystems, insurers may soon prevent break-ins from the start.

By gathering sensor data from third parties on neighborhood conditions, historical theft data, suspicious activity and other risk factors, an insurtech firm might automatically put your smart home on high alert, activating alarms and specialized locks in advance of an attack.

Insurance policy premiums are predicted to vastly reduce with lessened likelihood of insured losses. But insurers moving into preventive insurtech will likely turn a profit from other areas of their business. PricewaterhouseCoopers predicts that the connected home market will reach $149 billion USD by 2020.

Let’s look at car insurance.

Car insurance premiums are currently calculated according to the driver and traits of the car. But as more autonomous vehicles take to the roads, not only does liability shift to manufacturers and software engineers, but the risk of collision falls dramatically.

But let’s take this a step further.

In a future of autonomous cars, you will no longer own your car, instead subscribing to Transport as a Service (TaaS) and giving up the purchase of automotive insurance altogether.

This paradigm shift has already begun with Waymo, which automatically provides passengers with insurance every time they step into a Waymo vehicle.

And with the rise of smart traffic systems, sensor-embedded roads, and skyrocketing autonomous vehicle technology, the risks involved in transit only continue to plummet.

Final Thoughts
Insurtech firms are hitting the market fast. IoT, autonomous vehicles and genetic screening are rapidly making us invulnerable to risk. And AI-driven services are quickly pushing conventional insurers out of the market.

By 2024, roll-out of 5G on the ground, as well as OneWeb and Starlink in orbit are bringing 4.2 billion new consumers to the web—most of whom will need insurance. Yet, because of the changes afoot in the industry, none of them will buy policies from a human broker.

While today’s largest insurance companies continue to ignore this fact at their peril (and this segment of the market), thousands of entrepreneurs see it more clearly: as one of the largest opportunities ahead.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: 24Novembers / Shutterstock.com Continue reading

Posted in Human Robots

#433758 DeepMind’s New Research Plan to Make ...

Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.

AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.

That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.

In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.

A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.

Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.

The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.

Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.

Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.

And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.

The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.

The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.

Image Credit: cono0430 / Shutterstock.com Continue reading

Posted in Human Robots

#433728 AI Is Kicking Space Exploration into ...

Artificial intelligence in space exploration is gathering momentum. Over the coming years, new missions look likely to be turbo-charged by AI as we voyage to comets, moons, and planets and explore the possibilities of mining asteroids.

“AI is already a game-changer that has made scientific research and exploration much more efficient. We are not just talking about a doubling but about a multiple of ten,” Leopold Summerer, Head of the Advanced Concepts and Studies Office at ESA, said in an interview with Singularity Hub.

Examples Abound
The history of AI and space exploration is older than many probably think. It has already played a significant role in research into our planet, the solar system, and the universe. As computer systems and software have developed, so have AI’s potential use cases.

The Earth Observer 1 (EO-1) satellite is a good example. Since its launch in the early 2000s, its onboard AI systems helped optimize analysis of and response to natural occurrences, like floods and volcanic eruptions. In some cases, the AI was able to tell EO-1 to start capturing images before the ground crew were even aware that the occurrence had taken place.

Other satellite and astronomy examples abound. Sky Image Cataloging and Analysis Tool (SKICAT) has assisted with the classification of objects discovered during the second Palomar Sky Survey, classifying thousands more objects caught in low resolution than a human would be able to. Similar AI systems have helped astronomers to identify 56 new possible gravitational lenses that play a crucial role in connection with research into dark matter.

AI’s ability to trawl through vast amounts of data and find correlations will become increasingly important in relation to getting the most out of the available data. ESA’s ENVISAT produces around 400 terabytes of new data every year—but will be dwarfed by the Square Kilometre Array, which will produce around the same amount of data that is currently on the internet in a day.

AI Readying For Mars
AI is also being used for trajectory and payload optimization. Both are important preliminary steps to NASA’s next rover mission to Mars, the Mars 2020 Rover, which is, slightly ironically, set to land on the red planet in early 2021.

An AI known as AEGIS is already on the red planet onboard NASA’s current rovers. The system can handle autonomous targeting of cameras and choose what to investigate. However, the next generation of AIs will be able to control vehicles, autonomously assist with study selection, and dynamically schedule and perform scientific tasks.

Throughout his career, John Leif Jørgensen from DTU Space in Denmark has designed equipment and systems that have been on board about 100 satellites—and counting. He is part of the team behind the Mars 2020 Rover’s autonomous scientific instrument PIXL, which makes extensive use of AI. Its purpose is to investigate whether there have been lifeforms like stromatolites on Mars.

“PIXL’s microscope is situated on the rover’s arm and needs to be placed 14 millimetres from what we want it to study. That happens thanks to several cameras placed on the rover. It may sound simple, but the handover process and finding out exactly where to place the arm can be likened to identifying a building from the street from a picture taken from the roof. This is something that AI is eminently suited for,” he said in an interview with Singularity Hub.

AI also helps PIXL operate autonomously throughout the night and continuously adjust as the environment changes—the temperature changes between day and night can be more than 100 degrees Celsius, meaning that the ground beneath the rover, the cameras, the robotic arm, and the rock being studied all keep changing distance.

“AI is at the core of all of this work, and helps almost double productivity,” Jørgensen said.

First Mars, Then Moons
Mars is likely far from the final destination for AIs in space. Jupiter’s moons have long fascinated scientists. Especially Europa, which could house a subsurface ocean, buried beneath an approximately 10 km thick ice crust. It is one of the most likely candidates for finding life elsewhere in the solar system.

While that mission may be some time in the future, NASA is currently planning to launch the James Webb Space Telescope into an orbit of around 1.5 million kilometers from Earth in 2020. Part of the mission will involve AI-empowered autonomous systems overseeing the full deployment of the telescope’s 705-kilo mirror.

The distances between Earth and Europa, or Earth and the James Webb telescope, means a delay in communications. That, in turn, makes it imperative for the crafts to be able to make their own decisions. Examples from the Mars Rover project show that communication between a rover and Earth can take 20 minutes because of the vast distance. A Europa mission would see much longer communication times.

Both missions, to varying degrees, illustrate one of the most significant challenges currently facing the use of AI in space exploration. There tends to be a direct correlation between how well AI systems perform and how much data they have been fed. The more, the better, as it were. But we simply don’t have very much data to feed such a system about what it’s likely to encounter on a mission to a place like Europa.

Computing power presents a second challenge. A strenuous, time-consuming approval process and the risk of radiation mean that your computer at home would likely be more powerful than anything going into space in the near future. A 200 GHz processor, 256 megabytes of ram, and 2 gigabytes of memory sounds a lot more like a Nokia 3210 (the one you could use as an ice hockey puck without it noticing) than an iPhone X—but it’s actually the ‘brain’ that will be onboard the next rover.

Private Companies Taking Off
Private companies are helping to push those limitations. CB Insights charts 57 startups in the space-space, covering areas as diverse as natural resources, consumer tourism, R&D, satellites, spacecraft design and launch, and data analytics.

David Chew works as an engineer for the Japanese satellite company Axelspace. He explained how private companies are pushing the speed of exploration and lowering costs.

“Many private space companies are taking advantage of fall-back systems and finding ways of using parts and systems that traditional companies have thought of as non-space-grade. By implementing fall-backs, and using AI, it is possible to integrate and use parts that lower costs without adding risk of failure,” he said in an interview with Singularity Hub.

Terraforming Our Future Home
Further into the future, moonshots like terraforming Mars await. Without AI, these kinds of projects to adapt other planets to Earth-like conditions would be impossible.

Autonomous crafts are already terraforming here on Earth. BioCarbon Engineering uses drones to plant up to 100,000 trees in a single day. Drones first survey and map an area, then an algorithm decides the optimal locations for the trees before a second wave of drones carry out the actual planting.

As is often the case with exponential technologies, there is a great potential for synergies and convergence. For example with AI and robotics, or quantum computing and machine learning. Why not send an AI-driven robot to Mars and use it as a telepresence for scientists on Earth? It could be argued that we are already in the early stages of doing just that by using VR and AR systems that take data from the Mars rovers and create a virtual landscape scientists can walk around in and make decisions on what the rovers should explore next.

One of the biggest benefits of AI in space exploration may not have that much to do with its actual functions. Chew believes that within as little as ten years, we could see the first mining of asteroids in the Kuiper Belt with the help of AI.

“I think one of the things that AI does to space exploration is that it opens up a whole range of new possible industries and services that have a more immediate effect on the lives of people on Earth,” he said. “It becomes a relatable industry that has a real effect on people’s daily lives. In a way, space exploration becomes part of people’s mindset, and the border between our planet and the solar system becomes less important.”

Image Credit: Taily / Shutterstock.com Continue reading

Posted in Human Robots

#433717 Could an artificial intelligence be ...

Humans aren't the only people in society – at least according to the law. In the U.S., corporations have been given rights of free speech and religion. Some natural features also have person-like rights. But both of those required changes to the legal system. A new argument has laid a path for artificial intelligence systems to be recognized as people too – without any legislation, court rulings or other revisions to existing law. Continue reading

Posted in Human Robots

#433668 A Decade of Commercial Space ...

In many industries, a decade is barely enough time to cause dramatic change unless something disruptive comes along—a new technology, business model, or service design. The space industry has recently been enjoying all three.

But 10 years ago, none of those innovations were guaranteed. In fact, on Sept. 28, 2008, an entire company watched and hoped as their flagship product attempted a final launch after three failures. With cash running low, this was the last shot. Over 21,000 kilograms of kerosene and liquid oxygen ignited and powered two booster stages off the launchpad.

This first official picture of the Soviet satellite Sputnik I was issued in Moscow Oct. 9, 1957. The satellite measured 1 foot, 11 inches and weighed 184 pounds. The Space Age began as the Soviet Union launched Sputnik, the first man-made satellite, into orbit, on Oct. 4, 1957.AP Photo/TASS
When that Falcon 1 rocket successfully reached orbit and the company secured a subsequent contract with NASA, SpaceX had survived its ‘startup dip’. That milestone, the first privately developed liquid-fueled rocket to reach orbit, ignited a new space industry that is changing our world, on this planet and beyond. What has happened in the intervening years, and what does it mean going forward?

While scientists are busy developing new technologies that address the countless technical problems of space, there is another segment of researchers, including myself, studying the business angle and the operations issues facing this new industry. In a recent paper, my colleague Christopher Tang and I investigate the questions firms need to answer in order to create a sustainable space industry and make it possible for humans to establish extraterrestrial bases, mine asteroids and extend space travel—all while governments play an increasingly smaller role in funding space enterprises. We believe these business solutions may hold the less-glamorous key to unlocking the galaxy.

The New Global Space Industry
When the Soviet Union launched their Sputnik program, putting a satellite in orbit in 1957, they kicked off a race to space fueled by international competition and Cold War fears. The Soviet Union and the United States played the primary roles, stringing together a series of “firsts” for the record books. The first chapter of the space race culminated with Neil Armstrong and Buzz Aldrin’s historic Apollo 11 moon landing which required massive public investment, on the order of US$25.4 billion, almost $200 billion in today’s dollars.

Competition characterized this early portion of space history. Eventually, that evolved into collaboration, with the International Space Station being a stellar example, as governments worked toward shared goals. Now, we’ve entered a new phase—openness—with private, commercial companies leading the way.

The industry for spacecraft and satellite launches is becoming more commercialized, due, in part, to shrinking government budgets. According to a report from the investment firm Space Angels, a record 120 venture capital firms invested over $3.9 billion in private space enterprises last year. The space industry is also becoming global, no longer dominated by the Cold War rivals, the United States and USSR.

In 2018 to date, there have been 72 orbital launches, an average of two per week, from launch pads in China, Russia, India, Japan, French Guinea, New Zealand, and the US.

The uptick in orbital launches of actual rockets as well as spacecraft launches, which includes satellites and probes launched from space, coincides with this openness over the past decade.

More governments, firms and even amateurs engage in various spacecraft launches than ever before. With more entities involved, innovation has flourished. As Roberson notes in Digital Trends, “Private, commercial spaceflight. Even lunar exploration, mining, and colonization—it’s suddenly all on the table, making the race for space today more vital than it has felt in years.”

Worldwide launches into space. Orbital launches include manned and unmanned spaceships launched into orbital flight from Earth. Spacecraft launches include all vehicles such as spaceships, satellites and probes launched from Earth or space. Wooten, J. and C. Tang (2018) Operations in space, Decision Sciences; Space Launch Report (Kyle 2017); Spacecraft Encyclopedia (Lafleur 2017), CC BY-ND

One can see this vitality plainly in the news. On Sept. 21, Japan announced that two of its unmanned rovers, dubbed Minerva-II-1, had landed on a small, distant asteroid. For perspective, the scale of this landing is similar to hitting a 6-centimeter target from 20,000 kilometers away. And earlier this year, people around the world watched in awe as SpaceX’s Falcon Heavy rocket successfully launched and, more impressively, returned its two boosters to a landing pad in a synchronized ballet of epic proportions.

Challenges and Opportunities
Amidst the growth of capital, firms, and knowledge, both researchers and practitioners must figure out how entities should manage their daily operations, organize their supply chain, and develop sustainable operations in space. This is complicated by the hurdles space poses: distance, gravity, inhospitable environments, and information scarcity.

One of the greatest challenges involves actually getting the things people want in space, into space. Manufacturing everything on Earth and then launching it with rockets is expensive and restrictive. A company called Made In Space is taking a different approach by maintaining an additive manufacturing facility on the International Space Station and 3D printing right in space. Tools, spare parts, and medical devices for the crew can all be created on demand. The benefits include more flexibility and better inventory management on the space station. In addition, certain products can be produced better in space than on Earth, such as pure optical fiber.

How should companies determine the value of manufacturing in space? Where should capacity be built and how should it be scaled up? The figure below breaks up the origin and destination of goods between Earth and space and arranges products into quadrants. Humans have mastered the lower left quadrant, made on Earth—for use on Earth. Moving clockwise from there, each quadrant introduces new challenges, for which we have less and less expertise.

A framework of Earth-space operations. Wooten, J. and C. Tang (2018) Operations in Space, Decision Sciences, CC BY-ND
I first became interested in this particular problem as I listened to a panel of robotics experts discuss building a colony on Mars (in our third quadrant). You can’t build the structures on Earth and easily send them to Mars, so you must manufacture there. But putting human builders in that extreme environment is equally problematic. Essentially, an entirely new mode of production using robots and automation in an advance envoy may be required.

Resources in Space
You might wonder where one gets the materials for manufacturing in space, but there is actually an abundance of resources: Metals for manufacturing can be found within asteroids, water for rocket fuel is frozen as ice on planets and moons, and rare elements like helium-3 for energy are embedded in the crust of the moon. If we brought that particular isotope back to Earth, we could eliminate our dependence on fossil fuels.

As demonstrated by the recent Minerva-II-1 asteroid landing, people are acquiring the technical know-how to locate and navigate to these materials. But extraction and transport are open questions.

How do these cases change the economics in the space industry? Already, companies like Planetary Resources, Moon Express, Deep Space Industries, and Asterank are organizing to address these opportunities. And scholars are beginning to outline how to navigate questions of property rights, exploitation and partnerships.

Threats From Space Junk
A computer-generated image of objects in Earth orbit that are currently being tracked. Approximately 95 percent of the objects in this illustration are orbital debris – not functional satellites. The dots represent the current location of each item. The orbital debris dots are scaled according to the image size of the graphic to optimize their visibility and are not scaled to Earth. NASA
The movie “Gravity” opens with a Russian satellite exploding, which sets off a chain reaction of destruction thanks to debris hitting a space shuttle, the Hubble telescope, and part of the International Space Station. The sequence, while not perfectly plausible as written, is a very real phenomenon. In fact, in 2013, a Russian satellite disintegrated when it was hit with fragments from a Chinese satellite that exploded in 2007. Known as the Kessler effect, the danger from the 500,000-plus pieces of space debris has already gotten some attention in public policy circles. How should one prevent, reduce or mitigate this risk? Quantifying the environmental impact of the space industry and addressing sustainable operations is still to come.

NASA scientist Mark Matney is seen through a fist-sized hole in a 3-inch thick piece of aluminum at Johnson Space Center’s orbital debris program lab. The hole was created by a thumb-size piece of material hitting the metal at very high speed simulating possible damage from space junk. AP Photo/Pat Sullivan
What’s Next?
It’s true that space is becoming just another place to do business. There are companies that will handle the logistics of getting your destined-for-space module on board a rocket; there are companies that will fly those rockets to the International Space Station; and there are others that can make a replacement part once there.

What comes next? In one sense, it’s anybody’s guess, but all signs point to this new industry forging ahead. A new breakthrough could alter the speed, but the course seems set: exploring farther away from home, whether that’s the moon, asteroids, or Mars. It’s hard to believe that 10 years ago, SpaceX launches were yet to be successful. Today, a vibrant private sector consists of scores of companies working on everything from commercial spacecraft and rocket propulsion to space mining and food production. The next step is working to solidify the business practices and mature the industry.

Standing in a large hall at the University of Pittsburgh as part of the White House Frontiers Conference, I see the future. Wrapped around my head are state-of-the-art virtual reality goggles. I’m looking at the surface of Mars. Every detail is immediate and crisp. This is not just a video game or an aimless exercise. The scientific community has poured resources into such efforts because exploration is preceded by information. And who knows, maybe 10 years from now, someone will be standing on the actual surface of Mars.

Image Credit: SpaceX

Joel Wooten, Assistant Professor of Management Science, University of South Carolina

This article is republished from The Conversation under a Creative Commons license. Read the original article. Continue reading

Posted in Human Robots