Tag Archives: becoming

#431899 Darker Still: Black Mirror’s New ...

The key difference between science fiction and fantasy is that science fiction is entirely possible because of its grounding in scientific facts, while fantasy is not. This is where Black Mirror is both an entertaining and terrifying work of science fiction. Created by Charlie Brooker, the anthological series tells cautionary tales of emerging technology that could one day be an integral part of our everyday lives.
While watching the often alarming episodes, one can’t help but recognize the eerie similarities to some of the tech tools that are already abundant in our lives today. In fact, many previous Black Mirror predictions are already becoming reality.
The latest season of Black Mirror was arguably darker than ever. This time, Brooker seemed to focus on the ethical implications of one particular area: neurotechnology.
Emerging Neurotechnology
Warning: The remainder of this article may contain spoilers from Season 4 of Black Mirror.
Most of the storylines from season four revolve around neurotechnology and brain-machine interfaces. They are based in a world where people have the power to upload their consciousness onto machines, have fully immersive experiences in virtual reality, merge their minds with other minds, record others’ memories, and even track what others are thinking, feeling, and doing.
How can all this ever be possible? Well, these capabilities are already being developed by pioneers and researchers globally. Early last year, Elon Musk unveiled Neuralink, a company whose goal is to merge the human mind with AI through a neural lace. We’ve already connected two brains via the internet, allowing one brain to communicate with another. Various research teams have been able to develop mechanisms for “reading minds” or reconstructing memories of individuals via devices. The list goes on.
With many of the technologies we see in Black Mirror it’s not a question of if, but when. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to upload our consciousness onto the cloud via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” While other experts continue to challenge Kurzweil on the exact year we’ll accomplish this feat, with the current exponential growth of our technological capabilities, we’re on track to get there eventually.
Ethical Questions
As always, technology is only half the conversation. Equally fascinating are the many ethical and moral questions this topic raises.
For instance, with the increasing convergence of artificial intelligence and virtual reality, we have to ask ourselves if our morality from the physical world transfers equally into the virtual world. The first episode of season four, USS Calister, tells the story of a VR pioneer, Robert Daley, who creates breakthrough AI and VR to satisfy his personal frustrations and sexual urges. He uses the DNA of his coworkers (and their children) to re-create them digitally in his virtual world, to which he escapes to torture them, while they continue to be indifferent in the “real” world.
Audiences are left asking themselves: should what happens in the digital world be considered any less “real” than the physical world? How do we know if the individuals in the virtual world (who are ultimately based on algorithms) have true feelings or sentiments? Have they been developed to exhibit characteristics associated with suffering, or can they really feel suffering? Fascinatingly, these questions point to the hard problem of consciousness—the question of if, why, and how a given physical process generates the specific experience it does—which remains a major mystery in neuroscience.
Towards the end of USS Calister, the hostages of Daley’s virtual world attempt to escape through suicide, by committing an act that will delete the code that allows them to exist. This raises yet another mind-boggling ethical question: if we “delete” code that signifies a digital being, should that be considered murder (or suicide, in this case)? Why shouldn’t it? When we murder someone we are, in essence, taking away their capacity to live and to be, without their consent. By unplugging a self-aware AI, wouldn’t we be violating its basic right to live in the same why? Does AI, as code, even have rights?
Brain implants can also have a radical impact on our self-identity and how we define the word “I”. In the episode Black Museum, instead of witnessing just one horror, we get a series of scares in little segments. One of those segments tells the story of a father who attempts to reincarnate the mother of his child by uploading her consciousness into his mind and allowing her to live in his head (essentially giving him multiple personality disorder). In this way, she can experience special moments with their son.
With “no privacy for him, and no agency for her” the good intention slowly goes very wrong. This story raises a critical question: should we be allowed to upload consciousness into limited bodies? Even more, if we are to upload our minds into “the cloud,” at what point do we lose our individuality to become one collective being?
These questions can form the basis of hours of debate, but we’re just getting started. There are no right or wrong answers with many of these moral dilemmas, but we need to start having such discussions.
The Downside of Dystopian Sci-Fi
Like last season’s San Junipero, one episode of the series, Hang the DJ, had an uplifting ending. Yet the overwhelming majority of the stories in Black Mirror continue to focus on the darkest side of human nature, feeding into the pre-existing paranoia of the general public. There is certainly some value in this; it’s important to be aware of the dangers of technology. After all, what better way to explore these dangers before they occur than through speculative fiction?
A big takeaway from every tale told in the series is that the greatest threat to humanity does not come from technology, but from ourselves. Technology itself is not inherently good or evil; it all comes down to how we choose to use it as a society. So for those of you who are techno-paranoid, beware, for it’s not the technology you should fear, but the humans who get their hands on it.
While we can paint negative visions for the future, though, it is also important to paint positive ones. The kind of visions we set for ourselves have the power to inspire and motivate generations. Many people are inherently pessimistic when thinking about the future, and that pessimism in turn can shape their contributions to humanity.
While utopia may not exist, the future of our species could and should be one of solving global challenges, abundance, prosperity, liberation, and cosmic transcendence. Now that would be a thrilling episode to watch.
Image Credit: Billion Photos / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431862 Want Self-Healing Robots and Tires? ...

We all have scars, and each one tells a story. Tales of tomfoolery, tales of haphazardness, or in my case, tales of stupidity.
Whether the cause of your scar was a push-bike accident, a lack of concentration while cutting onions, or simply the byproduct of an active lifestyle, the experience was likely extremely painful and distressing. Not to mention the long and vexatious recovery period, stretching out for weeks and months after the actual event!
Cast your minds back to that time. How you longed for instant relief from your discomfort! How you longed to have your capabilities restored in an instant!
Well, materials that can heal themselves in an instant may not be far from becoming a reality—and a family of them known as elastomers holds the key.
“Elastomer” is essentially a big, fancy word for rubber. However, elastomers have one unique property—they are capable of returning to their original form after being vigorously stretched and deformed.
This unique property of elastomers has caught the eye of many scientists around the world, particularly those working in the field of robotics. The reason? Elastomer can be encouraged to return to its original shape, in many cases by simply applying heat. The implication of this is the quick and cost-effective repair of “wounds”—cuts, tears, and punctures to the soft, elastomer-based appendages of a robot’s exoskeleton.

Researchers from Vrije University in Brussels, Belgium have been toying with the technique, and with remarkable success. The team built a robotic hand with fingers made of a type of elastomer. They found that cuts and punctures were indeed able to repair themselves simply by applying heat to the affected area.
How long does the healing process take? In this instance, about a day. Now that’s a lot shorter than the weeks and months of recovery time we typically need for a flesh wound, during which we are unable to write, play the guitar, or do the dishes. If you consider the latter to be a bad thing…
However, it’s not the first time scientists have played around with elastomers and examined their self-healing properties. Another team of scientists, headed up by Cheng-Hui Li and Chao Wang, discovered another type of elastomer that exhibited autonomous self-healing properties. Just to help you picture this stuff, the material closely resembles animal muscle— strong, flexible, and elastic. With autogenetic restorative powers to boot.
Advancements in the world of self-healing elastomers, or rubbers, may also affect the lives of everyday motorists. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a self-healing rubber material that could be used to make tires that repair their own punctures.
This time the mechanism of self-healing doesn’t involve heat. Rather, it is related to a physical phenomenon associated with the rubber’s unique structure. Normally, when a large enough stress is applied to a typical rubber, there is catastrophic failure at the focal point of that stress. The self-healing rubber the researchers created, on the other hand, distributes that same stress evenly over a network of “crazes”—which are like cracks connected by strands of fiber.
Here’s the interesting part. Not only does this unique physical characteristic of the rubber prevent catastrophic failure, it facilitates self-repair. According to Harvard researchers, when the stress is released, the material snaps back to its original form and the crazes heal.
This wonder material could be used in any number of rubber-based products.
Professor Jinrong Wu, of Sichuan University, China, and co-author of the study, happened to single out tires: “Imagine that we could use this material as one of the components to make a rubber tire… If you have a cut through the tire, this tire wouldn’t have to be replaced right away. Instead, it would self-heal while driving, enough to give you leeway to avoid dramatic damage,” said Wu.
So where to from here? Well, self-healing elastomers could have a number of different applications. According to the article published by Quartz, cited earlier, the material could be used on artificial limbs. Perhaps it will provide some measure of structural integrity without looking like a tattered mess after years of regular use.
Or perhaps a sort of elastomer-based hybrid skin is on the horizon. A skin in which wounds heal instantly. And recovery time, unlike your regular old human skin of yesteryear, is significantly slashed. Furthermore, this future skin might eliminate those little reminders we call scars.
For those with poor judgment skills, this spells an end to disquieting reminders of our own stupidity.
Image Credit: Vrije Universiteit Brussel / Prof. Dr. ir. Bram Vanderborght Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431859 Digitized to Democratized: These Are the ...

“The Six Ds are a chain reaction of technological progression, a road map of rapid development that always leads to enormous upheaval and opportunity.”
–Peter Diamandis and Steven Kotler, Bold
We live in incredible times. News travels the globe in an instant. Music, movies, games, communication, and knowledge are ever-available on always-connected devices. From biotechnology to artificial intelligence, powerful technologies that were once only available to huge organizations and governments are becoming more accessible and affordable thanks to digitization.
The potential for entrepreneurs to disrupt industries and corporate behemoths to unexpectedly go extinct has never been greater.
One hundred or fifty or even twenty years ago, disruption meant coming up with a product or service people needed but didn’t have yet, then finding a way to produce it with higher quality and lower costs than your competitors. This entailed hiring hundreds or thousands of employees, having a large physical space to put them in, and waiting years or even decades for hard work to pay off and products to come to fruition.

“Technology is disrupting traditional industrial processes, and they’re never going back.”

But thanks to digital technologies developing at exponential rates of change, the landscape of 21st-century business has taken on a dramatically different look and feel.
The structure of organizations is changing. Instead of thousands of employees and large physical plants, modern start-ups are small organizations focused on information technologies. They dematerialize what was once physical and create new products and revenue streams in months, sometimes weeks.
It no longer takes a huge corporation to have a huge impact.
Technology is disrupting traditional industrial processes, and they’re never going back. This disruption is filled with opportunity for forward-thinking entrepreneurs.
The secret to positively impacting the lives of millions of people is understanding and internalizing the growth cycle of digital technologies. This growth cycle takes place in six key steps, which Peter Diamandis calls the Six Ds of Exponentials: digitization, deception, disruption, demonetization, dematerialization, and democratization.
According to Diamandis, cofounder and chairman of Singularity University and founder and executive chairman of XPRIZE, when something is digitized it begins to behave like an information technology.

Newly digitized products develop at an exponential pace instead of a linear one, fooling onlookers at first before going on to disrupt companies and whole industries. Before you know it, something that was once expensive and physical is an app that costs a buck.
Newspapers and CDs are two obvious recent examples. The entertainment and media industries are still dealing with the aftermath of digitization as they attempt to transform and update old practices tailored to a bygone era. But it won’t end with digital media. As more of the economy is digitized—from medicine to manufacturing—industries will hop on an exponential curve and be similarly disrupted.
Diamandis’s 6 Ds are critical to understanding and planning for this disruption.
The 6 Ds of Exponential Organizations are Digitized, Deceptive, Disruptive, Demonetized, Dematerialized, and Democratized.

Diamandis uses the contrasting fates of Kodak and Instagram to illustrate the power of the six Ds and exponential thinking.
Kodak invented the digital camera in 1975, but didn’t invest heavily in the new technology, instead sticking with what had always worked: traditional cameras and film. In 1996, Kodak had a $28 billion market capitalization with 95,000 employees.
But the company didn’t pay enough attention to how digitization of their core business was changing it; people were no longer taking pictures in the same way and for the same reasons as before.
After a downward spiral, Kodak went bankrupt in 2012. That same year, Facebook acquired Instagram, a digital photo sharing app, which at the time was a startup with 13 employees. The acquisition’s price tag? $1 billion. And Instagram had been founded only 18 months earlier.
The most ironic piece of this story is that Kodak invented the digital camera; they took the first step toward overhauling the photography industry and ushering it into the modern age, but they were unwilling to disrupt their existing business by taking a risk in what was then uncharted territory. So others did it instead.
The same can happen with any technology that’s just getting off the ground. It’s easy to stop pursuing it in the early part of the exponential curve, when development appears to be moving slowly. But failing to follow through only gives someone else the chance to do it instead.
The Six Ds are a road map showing what can happen when an exponential technology is born. Not every phase is easy, but the results give even small teams the power to change the world in a faster and more impactful way than traditional business ever could.
Image Credit: Mohammed Tareq / Shutterstock Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431653 9 Robot Animals Built From Nature’s ...

Millions of years of evolution have allowed animals to develop some elegant and highly efficient solutions to problems like locomotion, flight, and dexterity. As Boston Dynamics unveils its latest mechanical animals, here’s a rundown of nine recent robots that borrow from nature and why.
SpotMini – Boston Dynamics

Starting with BigDog in 2005, the US company has built a whole stable of four-legged robots in recent years. Their first product was designed to be a robotic packhorse for soldiers that borrowed the quadrupedal locomotion of animals to travel over terrain too rough for conventional vehicles.
The US Army ultimately rejected the robot for being too noisy, according to the Guardian, but since then the company has scaled down its design, first to the Spot, then a first edition of the SpotMini that came out last year.
The latter came with a robotic arm where its head should be and was touted as a domestic helper, but a sleeker second edition without the arm was released earlier this month. There’s little detail on what the new robot is designed for, but the more polished design suggests a more consumer-focused purpose.
OctopusGripper – Festo

Festo has released a long line of animal-inspired machines over the years, from a mechanical kangaroo to robotic butterflies. Its latest creation isn’t a full animal—instead it’s a gripper based on an octopus tentacle that can be attached to the end of a robotic arm.
The pneumatically-powered device is made of soft silicone and features two rows of suction cups on its inner edge. By applying compressed air the tentacle can wrap around a wide variety of differently shaped objects, just like its natural counterpart, and a vacuum can be applied to the larger suction cups to grip the object securely. Because it’s soft, it holds promise for robots required to operate safely in collaboration with humans.
CRAM – University of California, Berkeley

Cockroaches are renowned for their hardiness and ability to disappear down cracks that seem far too small for them. Researchers at UC Berkeley decided these capabilities could be useful for search and rescue missions and so set about experimenting on the insects to find out their secrets.
They found the bugs can squeeze into gaps a fifth of their normal standing height by splaying their legs out to the side without significantly slowing themselves down. So they built a palm-sized robot with a jointed plastic shell that could do the same to squeeze into crevices half its normal height.
Snake Robot – Carnegie Mellon University

Search and rescue missions are a common theme for animal-inspired robots, but the snake robot built by CMU researchers is one of the first to be tested in a real disaster.
A team of roboticists from the university helped Mexican Red Cross workers search collapsed buildings for survivors after the 7.1-magnitude earthquake that struck Mexico City in September. The snake design provides a small diameter and the ability to move in almost any direction, which makes the robot ideal for accessing tight spaces, though the team was unable to locate any survivors.
The snake currently features a camera on the front, but researchers told IEEE Spectrum that the experience helped them realize they should also add a microphone to listen for people trapped under the rubble.
Bio-Hybrid Stingray – Harvard University

Taking more than just inspiration from the animal kingdom, a group from Harvard built a robotic stingray out of silicone and rat heart muscle cells.
The robot uses the same synchronized undulations along the edge of its fins to propel itself as a ray does. But while a ray has two sets of muscles to pull the fins up and down, the new device has only one that pulls them down, with a springy gold skeleton that pulls them back up again. The cells are also genetically modified to be activated by flashes of light.
The project’s leader eventually hopes to engineer a human heart, and both his stingray and an earlier jellyfish bio-robot are primarily aimed at better understanding how that organ works.
Bat Bot – Caltech

Most recent advances in drone technology have come from quadcopters, but Caltech engineers think rigid devices with rapidly spinning propellers are probably not ideal for use in close quarters with humans.
That’s why they turned to soft-winged bats for inspiration. That’s no easy feat, though, considering bats use more than 40 joints with each flap of their wings, so the team had to optimize down to nine joints to avoid it becoming too bulky. The simplified bat can’t ascend yet, but its onboard computer and sensors let it autonomously carry out glides, turns, and dives.
Salto – UC Berkeley

While even the most advanced robots tend to plod around, tree-dwelling animals have the ability to spring from branch to branch to clear obstacles and climb quickly. This could prove invaluable for search and rescue robots by allowing them to quickly traverse disordered rubble.
UC Berkeley engineers turned to the Senegal bush baby for inspiration after determining it scored highest in “vertical jumping agility”—a combination of how high and how frequently an animal can jump. They recreated its ability to get into a super-low crouch that stores energy in its tendons to create a robot that could carry out parkour-style double jumps off walls to quickly gain height.
Pleurobot – École Polytechnique Fédérale de Lausanne

Normally robots are masters of air, land, or sea, but the robotic salamander built by researchers at EPFL can both walk and swim.
Its designers used X-ray videos to carefully study how the amphibians move before using this to build a true-to-life robotic version using 3D printed bones, motorized joints, and a synthetic nervous system made up of electronic circuitry.
The robot’s low center of mass and segmented legs make it great at navigating rough terrain without losing balance, and the ability to swim gives added versatility. They also hope it will help paleontologists gain a better understanding of the movements of the first tetrapods to transition from water to land, which salamanders are the best living analog of.
Eelume – Eelume

A snakelike body isn’t only useful on land—eels are living proof it’s an efficient way to travel underwater, too. Norwegian robotics company Eelume has borrowed these principles to build a robot capable of sub-sea inspection, maintenance, and repair.
The modular design allows operators to put together their own favored configuration of joints and payloads such as sensors and tools. And while an early version of the robot used the same method of locomotion as an eel, the latest version undergoing sea trials has added a variety of thrusters for greater speeds and more maneuverability.
Image Credit: Boston Dynamics / YouTube Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431361 Humanoid Sophia Becomes First Non-Human ...

Saudi Arabia recently made AI robot Sophia a “citizen”, thus becoming the first country to provide a non-human with citizenship! Related Posts The 6 Ds of Tech Disruption: A Guide to …“The Six Ds are a chain reaction of … … Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , | Comments Off on Humanoid Sophia Becomes First Non-Human ...