Tag Archives: baby

#433803 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
The AI Cold War That Could Doom Us All
Nicholas Thompson | Wired
“At the dawn of a new stage in the digital revolution, the world’s two most powerful nations are rapidly retreating into positions of competitive isolation, like players across a Go board. …Is the arc of the digital revolution bending toward tyranny, and is there any way to stop it?”

LONGEVITY
Finally, the Drug That Keeps You Young
Stephen S. Hall | MIT Technology Review
“The other thing that has changed is that the field of senescence—and the recognition that senescent cells can be such drivers of aging—has finally gained acceptance. Whether those drugs will work in people is still an open question. But the first human trials are under way right now.”

SYNTHETIC BIOLOGY
Ginkgo Bioworks Is Turning Human Cells Into On-Demand Factories
Megan Molteni | Wired
“The biotech unicorn is already cranking out an impressive number of microbial biofactories that grow and multiply and burp out fragrances, fertilizers, and soon, psychoactive substances. And they do it at a fraction of the cost of traditional systems. But Kelly is thinking even bigger.”

CYBERNETICS
Thousands of Swedes Are Inserting Microchips Under Their Skin
Maddy Savage | NPR
“Around the size of a grain of rice, the chips typically are inserted into the skin just above each user’s thumb, using a syringe similar to that used for giving vaccinations. The procedure costs about $180. So many Swedes are lining up to get the microchips that the country’s main chipping company says it can’t keep up with the number of requests.”

ART
AI Art at Christie’s Sells for $432,500
Gabe Cohn | The New York Times
“Last Friday, a portrait produced by artificial intelligence was hanging at Christie’s New York opposite an Andy Warhol print and beside a bronze work by Roy Lichtenstein. On Thursday, it sold for well over double the price realized by both those pieces combined.”

ETHICS
Should a Self-Driving Car Kill the Baby or the Grandma? Depends on Where You’re From
Karen Hao | MIT Technology Review
“The researchers never predicted the experiment’s viral reception. Four years after the platform went live, millions of people in 233 countries and territories have logged 40 million decisions, making it one of the largest studies ever done on global moral preferences.”

TECHNOLOGY
The Rodney Brooks Rules for Predicting a Technology’s Success
Rodney Brooks | IEEE Spectrum
“Building electric cars and reusable rockets is fairly easy. Building a nuclear fusion reactor, flying cars, self-driving cars, or a Hyperloop system is very hard. What makes the difference?”

Image Source: spainter_vfx / Shutterstock.com Continue reading

Posted in Human Robots

#433739 No Safety Driver Here—Volvo’s New ...

Each time there’s a headline about driverless trucking technology, another piece is taken out of the old equation. First, an Uber/Otto truck’s safety driver went hands-off once the truck reached the highway (and said truck successfully delivered its valuable cargo of 50,000 beers). Then, Starsky Robotics announced its trucks would start making autonomous deliveries without a human in the vehicle at all.

Now, Volvo has taken the tech one step further. Its new trucks not only won’t have safety drivers, they won’t even have the option of putting safety drivers behind the wheel, because there is no wheel—and no cab, either.

Vera, as the technology’s been dubbed, was unveiled in September, and consists of a sort of flat-Tesla-like electric car with a standard trailer hookup. The vehicles are connected to a cloud service, which also connects them to each other and to a control center. The control center monitors the trucks’ positioning (they’re designed to locate their position to within centimeters), battery charge, load content, service requirements, and other variables. The driveline and battery pack used in the cars are the same as those Volvo uses in its existing electric trucks.

You won’t see these cruising down an interstate highway, though, or even down a local highway. Vera trucks are designed to be used on short, repetitive routes contained within limited areas—think shipping ports, industrial parks, or logistics hubs. They’re limited to slower speeds than normal cars or trucks, and will be able to operate 24/7. “We will see much higher delivery precision, as well as improved flexibility and productivity,” said Mikael Karlsson, VP of Autonomous Solutions at Volvo Trucks. “Today’s operations are often designed according to standard daytime work hours, but a solution like Vera opens up the possibility of continuous round-the-clock operation and a more optimal flow. This in turn can minimize stock piles and increase overall productivity.”

The trucks are sort of like bigger versions of Amazon’s Kiva robots, which scoot around the aisles of warehouses and fulfillment centers moving pallets between shelves and fetching goods to be shipped.

Pairing trucks like Vera with robots like Kiva makes for a fascinating future landscape of logistics and transport; cargo will be moved from docks to warehouses by a large, flat robot-on-wheels, then distributed throughout that warehouse by smaller, flat robots-on-wheels. To really see the automated process through to the end point, even smaller flat robots-on-wheels will be used to deliver peoples’ goods right to their front doors.

Sounds like a lot of robots and not a lot of humans, right? Anticipating its technology’s implication in the ongoing uproar over technological unemployment, Volvo has already made statements about its intentions to continue to employ humans alongside the driverless trucks. “I foresee that there will be an increased level of automation where it makes sense, such as for repetitive tasks. This in turn will drive prosperity and increase the need for truck drivers in other applications,” said Karlsson.

The end-to-end automation concept has already been put into practice in Caofeidian, a northern Chinese city that houses the world’s first fully autonomous harbor, aiming to be operational by the end of this year. Besides replacing human-driven trucks with autonomous ones (made by Chinese startup TuSimple), the port is using automated cranes and a coordinating central control system.

Besides Uber/Otto, Tesla, or Daimler, which are all working on driverless trucks with a more conventional design (meaning they still have a cab and look like you’d expect a truck to look), Volvo also has competition from a company called Einride. The Swedish startup’s electric, cabless T/Pod looks a lot like Vera, but has some fundamental differences. Rather than being tailored to short distances and high capacity, Einride’s trucks are meant for medium distance and capacity, like moving goods from a distribution center to a series of local stores.

Vera trucks are currently still in the development phase. But since their intended use is quite specific and limited (Karlsson noted “Vera is not intended to be a solution for everyone, everywhere”), the technology could likely be rolled out faster than its more general-use counterparts. Having cabless electric trucks take over short routes in closed environments would be one more baby step along the road to a driverless future—and a testament to the fact that self-driving technology will move into our lives and our jobs incrementally, ostensibly giving us the time we’ll need to adapt and adjust.

Image Credit: Volvo Trucks Continue reading

Posted in Human Robots

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots

#431653 9 Robot Animals Built From Nature’s ...

Millions of years of evolution have allowed animals to develop some elegant and highly efficient solutions to problems like locomotion, flight, and dexterity. As Boston Dynamics unveils its latest mechanical animals, here’s a rundown of nine recent robots that borrow from nature and why.
SpotMini – Boston Dynamics

Starting with BigDog in 2005, the US company has built a whole stable of four-legged robots in recent years. Their first product was designed to be a robotic packhorse for soldiers that borrowed the quadrupedal locomotion of animals to travel over terrain too rough for conventional vehicles.
The US Army ultimately rejected the robot for being too noisy, according to the Guardian, but since then the company has scaled down its design, first to the Spot, then a first edition of the SpotMini that came out last year.
The latter came with a robotic arm where its head should be and was touted as a domestic helper, but a sleeker second edition without the arm was released earlier this month. There’s little detail on what the new robot is designed for, but the more polished design suggests a more consumer-focused purpose.
OctopusGripper – Festo

Festo has released a long line of animal-inspired machines over the years, from a mechanical kangaroo to robotic butterflies. Its latest creation isn’t a full animal—instead it’s a gripper based on an octopus tentacle that can be attached to the end of a robotic arm.
The pneumatically-powered device is made of soft silicone and features two rows of suction cups on its inner edge. By applying compressed air the tentacle can wrap around a wide variety of differently shaped objects, just like its natural counterpart, and a vacuum can be applied to the larger suction cups to grip the object securely. Because it’s soft, it holds promise for robots required to operate safely in collaboration with humans.
CRAM – University of California, Berkeley

Cockroaches are renowned for their hardiness and ability to disappear down cracks that seem far too small for them. Researchers at UC Berkeley decided these capabilities could be useful for search and rescue missions and so set about experimenting on the insects to find out their secrets.
They found the bugs can squeeze into gaps a fifth of their normal standing height by splaying their legs out to the side without significantly slowing themselves down. So they built a palm-sized robot with a jointed plastic shell that could do the same to squeeze into crevices half its normal height.
Snake Robot – Carnegie Mellon University

Search and rescue missions are a common theme for animal-inspired robots, but the snake robot built by CMU researchers is one of the first to be tested in a real disaster.
A team of roboticists from the university helped Mexican Red Cross workers search collapsed buildings for survivors after the 7.1-magnitude earthquake that struck Mexico City in September. The snake design provides a small diameter and the ability to move in almost any direction, which makes the robot ideal for accessing tight spaces, though the team was unable to locate any survivors.
The snake currently features a camera on the front, but researchers told IEEE Spectrum that the experience helped them realize they should also add a microphone to listen for people trapped under the rubble.
Bio-Hybrid Stingray – Harvard University

Taking more than just inspiration from the animal kingdom, a group from Harvard built a robotic stingray out of silicone and rat heart muscle cells.
The robot uses the same synchronized undulations along the edge of its fins to propel itself as a ray does. But while a ray has two sets of muscles to pull the fins up and down, the new device has only one that pulls them down, with a springy gold skeleton that pulls them back up again. The cells are also genetically modified to be activated by flashes of light.
The project’s leader eventually hopes to engineer a human heart, and both his stingray and an earlier jellyfish bio-robot are primarily aimed at better understanding how that organ works.
Bat Bot – Caltech

Most recent advances in drone technology have come from quadcopters, but Caltech engineers think rigid devices with rapidly spinning propellers are probably not ideal for use in close quarters with humans.
That’s why they turned to soft-winged bats for inspiration. That’s no easy feat, though, considering bats use more than 40 joints with each flap of their wings, so the team had to optimize down to nine joints to avoid it becoming too bulky. The simplified bat can’t ascend yet, but its onboard computer and sensors let it autonomously carry out glides, turns, and dives.
Salto – UC Berkeley

While even the most advanced robots tend to plod around, tree-dwelling animals have the ability to spring from branch to branch to clear obstacles and climb quickly. This could prove invaluable for search and rescue robots by allowing them to quickly traverse disordered rubble.
UC Berkeley engineers turned to the Senegal bush baby for inspiration after determining it scored highest in “vertical jumping agility”—a combination of how high and how frequently an animal can jump. They recreated its ability to get into a super-low crouch that stores energy in its tendons to create a robot that could carry out parkour-style double jumps off walls to quickly gain height.
Pleurobot – École Polytechnique Fédérale de Lausanne

Normally robots are masters of air, land, or sea, but the robotic salamander built by researchers at EPFL can both walk and swim.
Its designers used X-ray videos to carefully study how the amphibians move before using this to build a true-to-life robotic version using 3D printed bones, motorized joints, and a synthetic nervous system made up of electronic circuitry.
The robot’s low center of mass and segmented legs make it great at navigating rough terrain without losing balance, and the ability to swim gives added versatility. They also hope it will help paleontologists gain a better understanding of the movements of the first tetrapods to transition from water to land, which salamanders are the best living analog of.
Eelume – Eelume

A snakelike body isn’t only useful on land—eels are living proof it’s an efficient way to travel underwater, too. Norwegian robotics company Eelume has borrowed these principles to build a robot capable of sub-sea inspection, maintenance, and repair.
The modular design allows operators to put together their own favored configuration of joints and payloads such as sensors and tools. And while an early version of the robot used the same method of locomotion as an eel, the latest version undergoing sea trials has added a variety of thrusters for greater speeds and more maneuverability.
Image Credit: Boston Dynamics / YouTube Continue reading

Posted in Human Robots

#430863 Japanese child-like emotional robot

This Japanese “child” Android robot has flexible joints and a soft exterior. It expresses emotions and has a very authentic toddler-like demeanor and movements. Related Posts Kuri Robot Brings Autonomous Video to a …Mayfield Robotics improves their home robot Kuri, … Continue reading

Posted in Human Robots