Tag Archives: applied

#431999 Brain-Like Chips Now Beat the Human ...

Move over, deep learning. Neuromorphic computing—the next big thing in artificial intelligence—is on fire.

Just last week, two studies individually unveiled computer chips modeled after information processing in the human brain.

The first, published in Nature Materials, found a perfect solution to deal with unpredictability at synapses—the gap between two neurons that transmit and store information. The second, published in Science Advances, further amped up the system’s computational power, filling synapses with nanoclusters of supermagnetic material to bolster information encoding.

The result? Brain-like hardware systems that compute faster—and more efficiently—than the human brain.

“Ultimately we want a chip as big as a fingernail to replace one big supercomputer,” said Dr. Jeehwan Kim, who led the first study at MIT in Cambridge, Massachusetts.

Experts are hopeful.

“The field’s full of hype, and it’s nice to see quality work presented in an objective way,” said Dr. Carver Mead, an engineer at the California Institute of Technology in Pasadena not involved in the work.

Software to Hardware
The human brain is the ultimate computational wizard. With roughly 100 billion neurons densely packed into the size of a small football, the brain can deftly handle complex computation at lightning speed using very little energy.

AI experts have taken note. The past few years saw brain-inspired algorithms that can identify faces, falsify voices, and play a variety of games at—and often above—human capability.

But software is only part of the equation. Our current computers, with their transistors and binary digital systems, aren’t equipped to run these powerful algorithms.

That’s where neuromorphic computing comes in. The idea is simple: fabricate a computer chip that mimics the brain at the hardware level. Here, data is both processed and stored within the chip in an analog manner. Each artificial synapse can accumulate and integrate small bits of information from multiple sources and fire only when it reaches a threshold—much like its biological counterpart.

Experts believe the speed and efficiency gains will be enormous.

For one, the chips will no longer have to transfer data between the central processing unit (CPU) and storage blocks, which wastes both time and energy. For another, like biological neural networks, neuromorphic devices can support neurons that run millions of streams of parallel computation.

A “Brain-on-a-chip”
Optimism aside, reproducing the biological synapse in hardware form hasn’t been as easy as anticipated.

Neuromorphic chips exist in many forms, but often look like a nanoscale metal sandwich. The “bread” pieces are generally made of conductive plates surrounding a switching medium—a conductive material of sorts that acts like the gap in a biological synapse.

When a voltage is applied, as in the case of data input, ions move within the switching medium, which then creates conductive streams to stimulate the downstream plate. This change in conductivity mimics the way biological neurons change their “weight,” or the strength of connectivity between two adjacent neurons.

But so far, neuromorphic synapses have been rather unpredictable. According to Kim, that’s because the switching medium is often comprised of material that can’t channel ions to exact locations on the downstream plate.

“Once you apply some voltage to represent some data with your artificial neuron, you have to erase and be able to write it again in the exact same way,” explains Kim. “But in an amorphous solid, when you write again, the ions go in different directions because there are lots of defects.”

In his new study, Kim and colleagues swapped the jelly-like switching medium for silicon, a material with only a single line of defects that acts like a channel to guide ions.

The chip starts with a thin wafer of silicon etched with a honeycomb-like pattern. On top is a layer of silicon germanium—something often present in transistors—in the same pattern. This creates a funnel-like dislocation, a kind of Grand Canal that perfectly shuttles ions across the artificial synapse.

The researchers then made a neuromorphic chip containing these synapses and shot an electrical zap through them. Incredibly, the synapses’ response varied by only four percent—much higher than any neuromorphic device made with an amorphous switching medium.

In a computer simulation, the team built a multi-layer artificial neural network using parameters measured from their device. After tens of thousands of training examples, their neural network correctly recognized samples 95 percent of the time, just 2 percent lower than state-of-the-art software algorithms.

The upside? The neuromorphic chip requires much less space than the hardware that runs deep learning algorithms. Forget supercomputers—these chips could one day run complex computations right on our handheld devices.

A Magnetic Boost
Meanwhile, in Boulder, Colorado, Dr. Michael Schneider at the National Institute of Standards and Technology also realized that the standard switching medium had to go.

“There must be a better way to do this, because nature has figured out a better way to do this,” he says.

His solution? Nanoclusters of magnetic manganese.

Schneider’s chip contained two slices of superconducting electrodes made out of niobium, which channel electricity with no resistance. When researchers applied different magnetic fields to the synapse, they could control the alignment of the manganese “filling.”

The switch gave the chip a double boost. For one, by aligning the switching medium, the team could predict the ion flow and boost uniformity. For another, the magnetic manganese itself adds computational power. The chip can now encode data in both the level of electrical input and the direction of the magnetisms without bulking up the synapse.

It seriously worked. At one billion times per second, the chips fired several orders of magnitude faster than human neurons. Plus, the chips required just one ten-thousandth of the energy used by their biological counterparts, all the while synthesizing input from nine different sources in an analog manner.

The Road Ahead
These studies show that we may be nearing a benchmark where artificial synapses match—or even outperform—their human inspiration.

But to Dr. Steven Furber, an expert in neuromorphic computing, we still have a ways before the chips go mainstream.

Many of the special materials used in these chips require specific temperatures, he says. Magnetic manganese chips, for example, require temperatures around absolute zero to operate, meaning they come with the need for giant cooling tanks filled with liquid helium—obviously not practical for everyday use.

Another is scalability. Millions of synapses are necessary before a neuromorphic device can be used to tackle everyday problems such as facial recognition. So far, no deal.

But these problems may in fact be a driving force for the entire field. Intense competition could push teams into exploring different ideas and solutions to similar problems, much like these two studies.

If so, future chips may come in diverse flavors. Similar to our vast array of deep learning algorithms and operating systems, the computer chips of the future may also vary depending on specific requirements and needs.

It is worth developing as many different technological approaches as possible, says Furber, especially as neuroscientists increasingly understand what makes our biological synapses—the ultimate inspiration—so amazingly efficient.

Image Credit: arakio / Shutterstock.com Continue reading

Posted in Human Robots

#431939 This Awesome Robot Is the Size of a ...

They say size isn’t everything, but when it comes to delta robots it seems like it’s pretty important.

The speed and precision of these machines sees them employed in delicate pick-and-place tasks in all kinds of factories, as well as to control 3D printer heads. But Harvard researchers have found that scaling them down to millimeter scale makes them even faster and more precise, opening up applications in everything from microsurgery to manipulating tiny objects like circuit board components or even living cells.

Unlike the industrial robots you’re probably more familiar with, delta robots consist of three individually controlled arms supporting a platform. Different combinations of movements can move the platform in three directions, and a variety of tools can be attached to this platform.

The benefit of this design is that unlike a typical robotic arm, all the motors are housed at the base rather than at the joints, which reduces their mechanical complexity, but also—importantly—the weight of the arms. That means they can move and accelerate faster and with greater precision.

It’s been known for a while that the physics of these robots means the smaller you can make them, the more pronounced these advantages become, but scientists had struggled to build them at scales below tens of centimeters.

In a recent paper in the journal Science Robotics, the researchers describe how they used an origami-inspired micro-fabrication approach that relies on folding flat sheets of composite materials to create a robot measuring just 15 millimeters by 15 millimeters by 20 millimeters.

The robot dubbed “milliDelta” features joints that rely on a flexible polymer core to bend—a simplified version of the more complicated joints found in large-scale delta robots. The machine was powered by three piezoelectric actuators, which flex when a voltage is applied, and could perform movements at frequencies 15 to 20 times higher than current delta robots, with precisions down to roughly 5 micrometers.

One potential use for the device is to cancel out surgeons’ hand tremors as they carry out delicate microsurgery procedures, such as operations on the eye’s retina. The researchers actually investigated this application in their paper. They got volunteers to hold a toothpick and measured the movement of the tip to map natural hand tremors. They fed this data to the milliDelta, which was able to match the movements and therefore cancel them out.

In an email to Singularity Hub, the researchers said that adding the robot to the end of a surgical tool could make it possible to stabilize needles or scalpels, though this would require some design optimization. For a start, the base would have to be redesigned to fit on a surgical tool, and sensors would have to be added to the robot to allow it to measure tremors in real time.

Another promising application for the device would be placing components on circuit boards at very high speeds, which could prove valuable in electronics manufacturing. The researchers even think the device’s precision means it could be used for manipulating living cells in research and clinical laboratories.

The researchers even said it would be feasible to integrate the devices onto microrobots to give them similarly impressive manipulation capabilities, though that would require considerable work to overcome control and sensing challenges.

Image Credit: Wyss institute / Harvard Continue reading

Posted in Human Robots

#431920 If We Could Engineer Animals to Be as ...

Advances in neural implants and genetic engineering suggest that in the not–too–distant future we may be able to boost human intelligence. If that’s true, could we—and should we—bring our animal cousins along for the ride?
Human brain augmentation made headlines last year after several tech firms announced ambitious efforts to build neural implant technology. Duke University neuroscientist Mikhail Lebedev told me in July it could be decades before these devices have applications beyond the strictly medical.
But he said the technology, as well as other pharmacological and genetic engineering approaches, will almost certainly allow us to boost our mental capacities at some point in the next few decades.
Whether this kind of cognitive enhancement is a good idea or not, and how we should regulate it, are matters of heated debate among philosophers, futurists, and bioethicists, but for some it has raised the question of whether we could do the same for animals.
There’s already tantalizing evidence of the idea’s feasibility. As detailed in BBC Future, a group from MIT found that mice that were genetically engineered to express the human FOXP2 gene linked to learning and speech processing picked up maze routes faster. Another group at Wake Forest University studying Alzheimer’s found that neural implants could boost rhesus monkeys’ scores on intelligence tests.
The concept of “animal uplift” is most famously depicted in the Planet of the Apes movie series, whose planet–conquering protagonists are likely to put most people off the idea. But proponents are less pessimistic about the outcomes.
Science fiction author David Brin popularized the concept in his “Uplift” series of novels, in which humans share the world with various other intelligent animals that all bring their own unique skills, perspectives, and innovations to the table. “The benefits, after a few hundred years, could be amazing,” he told Scientific American.
Others, like George Dvorsky, the director of the Rights of Non-Human Persons program at the Institute for Ethics and Emerging Technologies, go further and claim there is a moral imperative. He told the Boston Globe that denying augmentation technology to animals would be just as unethical as excluding certain groups of humans.
Others are less convinced. Forbes’ Alex Knapp points out that developing the technology to uplift animals will likely require lots of very invasive animal research that will cause huge suffering to the animals it purports to help. This is problematic enough with normal animals, but could be even more morally dubious when applied to ones whose cognitive capacities have been enhanced.
The whole concept could also be based on a fundamental misunderstanding of the nature of intelligence. Humans are prone to seeing intelligence as a single, self-contained metric that progresses in a linear way with humans at the pinnacle.
In an opinion piece in Wired arguing against the likelihood of superhuman artificial intelligence, Kevin Kelly points out that science has no such single dimension with which to rank the intelligence of different species. Each one combines a bundle of cognitive capabilities, some of which are well below our own capabilities and others which are superhuman. He uses the example of the squirrel, which can remember the precise location of thousands of acorns for years.
Uplift efforts may end up being less about boosting intelligence and more about making animals more human-like. That represents “a kind of benevolent colonialism” that assumes being more human-like is a good thing, Paul Graham Raven, a futures researcher at the University of Sheffield in the United Kingdom, told the Boston Globe. There’s scant evidence that’s the case, and it’s easy to see how a chimpanzee with the mind of a human might struggle to adjust.
There are also fundamental barriers that may make it difficult to achieve human-level cognitive capabilities in animals, no matter how advanced brain augmentation technology gets. In 2013 Swedish researchers selectively bred small fish called guppies for bigger brains. This made them smarter, but growing the energy-intensive organ meant the guppies developed smaller guts and produced fewer offspring to compensate.
This highlights the fact that uplifting animals may require more than just changes to their brains, possibly a complete rewiring of their physiology that could prove far more technically challenging than human brain augmentation.
Our intelligence is intimately tied to our evolutionary history—our brains are bigger than other animals’; opposable thumbs allow us to use tools; our vocal chords make complex communication possible. No matter how much you augment a cow’s brain, it still couldn’t use a screwdriver or talk to you in English because it simply doesn’t have the machinery.
Finally, from a purely selfish point of view, even if it does become possible to create a level playing field between us and other animals, it may not be a smart move for humanity. There’s no reason to assume animals would be any more benevolent than we are, having evolved in the same ‘survival of the fittest’ crucible that we have. And given our already endless capacity to divide ourselves along national, religious, or ethnic lines, conflict between species seems inevitable.
We’re already likely to face considerable competition from smart machines in the coming decades if you believe the hype around AI. So maybe adding a few more intelligent species to the mix isn’t the best idea.
Image Credit: Ron Meijer / Shutterstock.com Continue reading

Posted in Human Robots

#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...

Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.

Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading

Posted in Human Robots

#431862 Want Self-Healing Robots and Tires? ...

We all have scars, and each one tells a story. Tales of tomfoolery, tales of haphazardness, or in my case, tales of stupidity.
Whether the cause of your scar was a push-bike accident, a lack of concentration while cutting onions, or simply the byproduct of an active lifestyle, the experience was likely extremely painful and distressing. Not to mention the long and vexatious recovery period, stretching out for weeks and months after the actual event!
Cast your minds back to that time. How you longed for instant relief from your discomfort! How you longed to have your capabilities restored in an instant!
Well, materials that can heal themselves in an instant may not be far from becoming a reality—and a family of them known as elastomers holds the key.
“Elastomer” is essentially a big, fancy word for rubber. However, elastomers have one unique property—they are capable of returning to their original form after being vigorously stretched and deformed.
This unique property of elastomers has caught the eye of many scientists around the world, particularly those working in the field of robotics. The reason? Elastomer can be encouraged to return to its original shape, in many cases by simply applying heat. The implication of this is the quick and cost-effective repair of “wounds”—cuts, tears, and punctures to the soft, elastomer-based appendages of a robot’s exoskeleton.

Researchers from Vrije University in Brussels, Belgium have been toying with the technique, and with remarkable success. The team built a robotic hand with fingers made of a type of elastomer. They found that cuts and punctures were indeed able to repair themselves simply by applying heat to the affected area.
How long does the healing process take? In this instance, about a day. Now that’s a lot shorter than the weeks and months of recovery time we typically need for a flesh wound, during which we are unable to write, play the guitar, or do the dishes. If you consider the latter to be a bad thing…
However, it’s not the first time scientists have played around with elastomers and examined their self-healing properties. Another team of scientists, headed up by Cheng-Hui Li and Chao Wang, discovered another type of elastomer that exhibited autonomous self-healing properties. Just to help you picture this stuff, the material closely resembles animal muscle— strong, flexible, and elastic. With autogenetic restorative powers to boot.
Advancements in the world of self-healing elastomers, or rubbers, may also affect the lives of everyday motorists. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a self-healing rubber material that could be used to make tires that repair their own punctures.
This time the mechanism of self-healing doesn’t involve heat. Rather, it is related to a physical phenomenon associated with the rubber’s unique structure. Normally, when a large enough stress is applied to a typical rubber, there is catastrophic failure at the focal point of that stress. The self-healing rubber the researchers created, on the other hand, distributes that same stress evenly over a network of “crazes”—which are like cracks connected by strands of fiber.
Here’s the interesting part. Not only does this unique physical characteristic of the rubber prevent catastrophic failure, it facilitates self-repair. According to Harvard researchers, when the stress is released, the material snaps back to its original form and the crazes heal.
This wonder material could be used in any number of rubber-based products.
Professor Jinrong Wu, of Sichuan University, China, and co-author of the study, happened to single out tires: “Imagine that we could use this material as one of the components to make a rubber tire… If you have a cut through the tire, this tire wouldn’t have to be replaced right away. Instead, it would self-heal while driving, enough to give you leeway to avoid dramatic damage,” said Wu.
So where to from here? Well, self-healing elastomers could have a number of different applications. According to the article published by Quartz, cited earlier, the material could be used on artificial limbs. Perhaps it will provide some measure of structural integrity without looking like a tattered mess after years of regular use.
Or perhaps a sort of elastomer-based hybrid skin is on the horizon. A skin in which wounds heal instantly. And recovery time, unlike your regular old human skin of yesteryear, is significantly slashed. Furthermore, this future skin might eliminate those little reminders we call scars.
For those with poor judgment skills, this spells an end to disquieting reminders of our own stupidity.
Image Credit: Vrije Universiteit Brussel / Prof. Dr. ir. Bram Vanderborght Continue reading

Posted in Human Robots