Tag Archives: appears

#433301 ‘Happiness Tech’ Is On the Rise. Is ...

We often get so fixated on technological progress that we forget it’s merely one component of the entirety of human progress. Technological advancement does not necessarily correlate with increases in human mental well-being.

While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. Amid what appears to be an increasing abundance of resources and ongoing human progress, we are experiencing a mental health epidemic, with high anxiety and depression rates. This is especially true in the developed world, where we have access to luxuries our ancestors couldn’t even dream of—all the world’s information contained in a device we hold in the palm of our hands, for example.

But as you may have realized through your own experience, technology can make us feel worse instead of better. Social media can become a tool for comparison and a source of debilitating status anxiety. Increased access to goods and services, along with the rise of consumerism, can lead people to choose “stuff” over true sources of meaning and get trapped in a hedonistic treadmill of materialism. Tools like artificial intelligence and big data could lead to violation of our privacy and autonomy. The digital world can take us away from the beauty of the present moment.

Understanding Happiness
How we use technology can significantly impact our happiness. In this context, “happiness” refers to a general sense of well-being, gratitude, and inner peace. Even with such a simple definition, it is a state of mind many people will admit they lack.

Eastern philosophies have told us for thousands of years that the problem of human suffering begins with our thoughts and perceptions of the circumstances we are in, as opposed to beginning with the circumstances themselves. As Derren Brown brilliantly points out in Happy: Why More or Less Everything Is Absolutely Fine, “The problem with the modern conception of happiness is that it is seen as some kind of commodity. There is this fantasy that simply by believing in yourself and setting goals you can have anything. But that simply isn’t how life works. The ancients had a much better view of it. They offered an approach of not trying to control things you can’t control, and of lessening your desires and your expectations so you achieve a harmony between what you desire and what you have.”

A core part of feeling more happy is about re-wiring our minds to adjust our expectations, exercise gratitude, escape negative narratives, and live in the present moment.

But can technology help us do that?

Applications for Mental Well-Being
Many doers are asking themselves how they can leverage digital tools to contribute to human happiness.

Meditation and mindfulness are examples of practices we can use to escape the often overwhelming burden of our thoughts and ground our minds into the present. They have become increasingly democratized with the rise of meditation mobile apps, such as Headspace, Gaia, and Calm, that allow millions of people globally to use their phones to learn from experts at a very low cost.

These companies have also partnered with hospitals, airlines, athletic teams, and others that could benefit from increased access to mindfulness and meditation. The popularity of these apps continues to rise as more people recognize their necessity. The combination of mass technology and ancient wisdom is one that can lead to a transformation of the collective consciousness.

Sometimes merely reflecting on the sources of joy in our lives and practicing gratitude can contribute to better well-being. Apps such as Happier encourage users to reflect upon and share pleasant everyday moments in their daily lives. Such exercises are based on the understanding that being happy is a “skill” one can build though practice and through scientifically-proven activities, such as writing down a nice thought and sharing your positivity with the world. Many other tools such as Track Your Happiness and Happstr allow users to track their happiness, which often serves as a valuable source of data to researchers.

There is also a growing body of knowledge that tells us we can achieve happiness by helping others. This “helper’s high” is a result of our brains producing endorphins after having a positive impact on the lives of others. In many shapes and forms, technology has made it easier now more than ever to help other people no matter where they are located. From charitable donations to the rise of social impact organizations, there is an abundance of projects that leverage technology to positively impact individual lives. Platforms like GoVolunteer connect nonprofits with individuals from a variety of skill sets who are looking to gift their abilities to those in need. Kiva allows for fundraising loans that can change lives. These are just a handful of examples of a much wider positive paradigm shift.

The Future of Technology for Well-Being
There is no denying that increasingly powerful and immersive technology can be used to better or worsen the human condition. Today’s leaders will not only have to focus on their ability to use technology to solve a problem or generate greater revenue; they will have to ask themselves if their tech solutions are beneficial or detrimental to human well-being. They will also have to remember that more powerful technology does not always translate to happier users. It is also crucial that future generations be equipped with the values required to use increasingly powerful tools responsibly and ethically.

In the Education 2030 report, the Millennium Project envisions a world wherein portable intelligent devices combined with integrated systems for lifelong learning contribute to better well-being. In this vision, “continuous evaluation of individual learning processes designed to prevent people from growing unstable and/or becoming mentally ill, along with programs aimed at eliminating prejudice and hate, could bring about a more beautiful, loving world.”

There is exciting potential for technology to be leveraged to contribute to human happiness at a massive scale. Yet, technology shouldn’t consume every aspect of our lives, since a life worth living is often about balance. Sometimes, even if just for a few moments, what would make us feel happier is we disconnected from technology to begin with.

Image Credit: 13_Phunkod / Shutterstock.com Continue reading

Posted in Human Robots

#433288 The New AI Tech Turning Heads in Video ...

A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”

An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.

The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.

In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.

The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.

“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”

AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.

In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.

A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.

A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.

The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.

Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.

“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.

Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.

To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.

The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.

“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.

Image Credit: Tancha / Shutterstock.com Continue reading

Posted in Human Robots

#432487 Can We Make a Musical Turing Test?

As artificial intelligence advances, we’re encountering the same old questions. How much of what we consider to be fundamentally human can be reduced to an algorithm? Can we create something sufficiently advanced that people can no longer distinguish between the two? This, after all, is the idea behind the Turing Test, which has yet to be passed.

At first glance, you might think music is beyond the realm of algorithms. Birds can sing, and people can compose symphonies. Music is evocative; it makes us feel. Very often, our intense personal and emotional attachments to music are because it reminds us of our shared humanity. We are told that creative jobs are the least likely to be automated. Creativity seems fundamentally human.

But I think above all, we view it as reductionist sacrilege: to dissect beautiful things. “If you try to strangle a skylark / to cut it up, see how it works / you will stop its heart from beating / you will stop its mouth from singing.” A human musician wrote that; a machine might be able to string words together that are happy or sad; it might even be able to conjure up a decent metaphor from the depths of some neural network—but could it understand humanity enough to produce art that speaks to humans?

Then, of course, there’s the other side of the debate. Music, after all, has a deeply mathematical structure; you can train a machine to produce harmonics. “In the teachings of Pythagoras and his followers, music was inseparable from numbers, which were thought to be the key to the whole spiritual and physical universe,” according to Grout in A History of Western Music. You might argue that the process of musical composition cannot be reduced to a simple algorithm, yet musicians have often done so. Mozart, with his “Dice Music,” used the roll of a dice to decide how to order musical fragments; creativity through an 18th-century random number generator. Algorithmic music goes back a very long way, with the first papers on the subject from the 1960s.

Then there’s the techno-enthusiast side of the argument. iTunes has 26 million songs, easily more than a century of music. A human could never listen to and learn from them all, but a machine could. It could also memorize every note of Beethoven. Music can be converted into MIDI files, a nice chewable data format that allows even a character-by-character neural net you can run on your computer to generate music. (Seriously, even I could get this thing working.)

Indeed, generating music in the style of Bach has long been a test for AI, and you can see neural networks gradually learn to imitate classical composers while trying to avoid overfitting. When an algorithm overfits, it essentially starts copying the existing music, rather than being inspired by it but creating something similar: a tightrope the best human artists learn to walk. Creativity doesn’t spring from nowhere; even maverick musical geniuses have their influences.

Does a machine have to be truly ‘creative’ to produce something that someone would find valuable? To what extent would listeners’ attitudes change if they thought they were hearing a human vs. an AI composition? This all suggests a musical Turing Test. Of course, it already exists. In fact, it’s run out of Dartmouth, the school that hosted that first, seminal AI summer conference. This year, the contest is bigger than ever: alongside the PoetiX, LimeriX and LyriX competitions for poetry and lyrics, there’s a DigiKidLit competition for children’s literature (although you may have reservations about exposing your children to neural-net generated content… it can get a bit surreal).

There’s also a pair of musical competitions, including one for original compositions in different genres. Key genres and styles are represented by Charlie Parker for Jazz and the Bach chorales for classical music. There’s also a free composition, and a contest where a human and an AI try to improvise together—the AI must respond to a human spontaneously, in real time, and in a musically pleasing way. Quite a challenge! In all cases, if any of the generated work is indistinguishable from human performers, the neural net has passed the Turing Test.

Did they? Here’s part of 2017’s winning sonnet from Charese Smiley and Hiroko Bretz:

The large cabin was in total darkness.
Come marching up the eastern hill afar.
When is the clock on the stairs dangerous?
Everything seemed so near and yet so far.
Behind the wall silence alone replied.
Was, then, even the staircase occupied?
Generating the rhymes is easy enough, the sentence structure a little trickier, but what’s impressive about this sonnet is that it sticks to a single topic and appears to be a more coherent whole. I’d guess they used associated “lexical fields” of similar words to help generate something coherent. In a similar way, most of the more famous examples of AI-generated music still involve some amount of human control, even if it’s editorial; a human will build a song around an AI-generated riff, or select the most convincing Bach chorale from amidst many different samples.

We are seeing strides forward in the ability of AI to generate human voices and human likenesses. As the latter example shows, in the fake news era people have focused on the dangers of this tech– but might it also be possible to create a virtual performer, trained on a dataset of their original music? Did you ever want to hear another Beatles album, or jam with Miles Davis? Of course, these things are impossible—but could we create a similar experience that people would genuinely value? Even, to the untrained eye, something indistinguishable from the real thing?

And if it did measure up to the real thing, what would this mean? Jaron Lanier is a fascinating technology writer, a critic of strong AI, and a believer in the power of virtual reality to change the world and provide truly meaningful experiences. He’s also a composer and a musical aficionado. He pointed out in a recent interview that translation algorithms, by reducing the amount of work translators are commissioned to do, have, in some sense, profited from stolen expertise. They were trained on huge datasets purloined from human linguists and translators. If you can train an AI on someone’s creative output and it produces new music, who “owns” it?

Although companies that offer AI music tools are starting to proliferate, and some groups will argue that the musical Turing test has been passed already, AI-generated music is hardly racing to the top of the pop charts just yet. Even as the line between human-composed and AI-generated music starts to blur, there’s still a gulf between the average human and musical genius. In the next few years, we’ll see how far the current techniques can take us. It may be the case that there’s something in the skylark’s song that can’t be generated by machines. But maybe not, and then this song might need an extra verse.

Image Credit: d1sk / Shutterstock.com Continue reading

Posted in Human Robots

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots

#432331 $10 million XPRIZE Aims for Robot ...

Ever wished you could be in two places at the same time? The XPRIZE Foundation wants to make that a reality with a $10 million competition to build robot avatars that can be controlled from at least 100 kilometers away.

The competition was announced by XPRIZE founder Peter Diamandis at the SXSW conference in Austin last week, with an ambitious timeline of awarding the grand prize by October 2021. Teams have until October 31st to sign up, and they need to submit detailed plans to a panel of judges by the end of next January.

The prize, sponsored by Japanese airline ANA, has given contestants little guidance on how they expect them to solve the challenge other than saying their solutions need to let users see, hear, feel, and interact with the robot’s environment as well as the people in it.

XPRIZE has also not revealed details of what kind of tasks the robots will be expected to complete, though they’ve said tasks will range from “simple” to “complex,” and it should be possible for an untrained operator to use them.

That’s a hugely ambitious goal that’s likely to require teams to combine multiple emerging technologies, from humanoid robotics to virtual reality high-bandwidth communications and high-resolution haptics.

If any of the teams succeed, the technology could have myriad applications, from letting emergency responders enter areas too hazardous for humans to helping people care for relatives who live far away or even just allowing tourists to visit other parts of the world without the jet lag.

“Our ability to physically experience another geographic location, or to provide on-the-ground assistance where needed, is limited by cost and the simple availability of time,” Diamandis said in a statement.

“The ANA Avatar XPRIZE can enable creation of an audacious alternative that could bypass these limitations, allowing us to more rapidly and efficiently distribute skill and hands-on expertise to distant geographic locations where they are needed, bridging the gap between distance, time, and cultures,” he added.

Interestingly, the technology may help bypass an enduring hand break on the widespread use of robotics: autonomy. By having a human in the loop, you don’t need nearly as much artificial intelligence analyzing sensory input and making decisions.

Robotics software is doing a lot more than just high-level planning and strategizing, though. While a human moves their limbs instinctively without consciously thinking about which muscles to activate, controlling and coordinating a robot’s components requires sophisticated algorithms.

The DARPA Robotics Challenge demonstrated just how hard it was to get human-shaped robots to do tasks humans would find simple, such as opening doors, climbing steps, and even just walking. These robots were supposedly semi-autonomous, but on many tasks they were essentially tele-operated, and the results suggested autonomy isn’t the only problem.

There’s also the issue of powering these devices. You may have noticed that in a lot of the slick web videos of humanoid robots doing cool things, the machine is attached to the roof by a large cable. That’s because they suck up huge amounts of power.

Possibly the most advanced humanoid robot—Boston Dynamics’ Atlas—has a battery, but it can only run for about an hour. That might be fine for some applications, but you don’t want it running out of juice halfway through rescuing someone from a mine shaft.

When it comes to the link between the robot and its human user, some of the technology is probably not that much of a stretch. Virtual reality headsets can create immersive audio-visual environments, and a number of companies are working on advanced haptic suits that will let people “feel” virtual environments.

Motion tracking technology may be more complicated. While even consumer-grade devices can track peoples’ movements with high accuracy, you will probably need to don something more like an exoskeleton that can both pick up motion and provide mechanical resistance, so that when the robot bumps into an immovable object, the user stops dead too.

How hard all of this will be is also dependent on how the competition ultimately defines subjective terms like “feel” and “interact.” Will the user need to be able to feel a gentle breeze on the robot’s cheek or be able to paint a watercolor? Or will simply having the ability to distinguish a hard object from a soft one or shake someone’s hand be enough?

Whatever the fidelity they decide on, the approach will require huge amounts of sensory and control data to be transmitted over large distances, most likely wirelessly, in a way that’s fast and reliable enough that there’s no lag or interruptions. Fortunately 5G is launching this year, with a speed of 10 gigabits per second and very low latency, so this problem should be solved by 2021.

And it’s worth remembering there have already been some tentative attempts at building robotic avatars. Telepresence robots have solved the seeing, hearing, and some of the interacting problems, and MIT has already used virtual reality to control robots to carry out complex manipulation tasks.

South Korean company Hankook Mirae Technology has also unveiled a 13-foot-tall robotic suit straight out of a sci-fi movie that appears to have made some headway with the motion tracking problem, albeit with a human inside the robot. Toyota’s T-HR3 does the same, but with the human controlling the robot from a “Master Maneuvering System” that marries motion tracking with VR.

Combining all of these capabilities into a single machine will certainly prove challenging. But if one of the teams pulls it off, you may be able to tick off trips to the Seven Wonders of the World without ever leaving your house.

Image Credit: ANA Avatar XPRIZE Continue reading

Posted in Human Robots