Tag Archives: york
#437258 This Startup Is 3D Printing Custom ...
Around 1.9 million people in the US are currently living with limb loss. The trauma of losing a limb is just the beginning of what amputees have to face, with the sky-high cost of prosthetics making their circumstance that much more challenging.
Prosthetics can run over $50,000 for a complex limb (like an arm or a leg) and aren’t always covered by insurance. As if shelling out that sum one time wasn’t costly enough, kids’ prosthetics need to be replaced as they outgrow them, meaning the total expense can reach hundreds of thousands of dollars.
A startup called Unlimited Tomorrow is trying to change this, and using cutting-edge technology to do so. Based in Rhinebeck, New York, a town about two hours north of New York City, the company was founded by 23-year-old Easton LaChappelle. He’d been teaching himself the basics of robotics and building prosthetics since grade school (his 8th grade science fair project was a robotic arm) and launched his company in 2014.
After six years of research and development, the company launched its TrueLimb product last month, describing it as an affordable, next-generation prosthetic arm using a custom remote-fitting process where the user never has to leave home.
The technologies used for TrueLimb’s customization and manufacturing are pretty impressive, in that they both cut costs and make the user’s experience a lot less stressful.
For starters, the entire purchase, sizing, and customization process for the prosthetic can be done remotely. Here’s how it works. First, prospective users fill out an eligibility form and give information about their residual limb. If they’re a qualified candidate for a prosthetic, Unlimited Tomorrow sends them a 3D scanner, which they use to scan their residual limb.
The company uses the scans to design a set of test sockets (the component that connects the residual limb to the prosthetic), which are mailed to the user. The company schedules a video meeting with the user for them to try on and discuss the different sockets, with the goal of finding the one that’s most comfortable; new sockets can be made based on the information collected during the video consultation. The user selects their skin tone from a swatch with 450 options, then Unlimited Tomorrow 3D prints and assembles the custom prosthetic and tests it before shipping it out.
“We print the socket, forearm, palm, and all the fingers out of durable nylon material in full color,” LaChappelle told Singularity Hub in an email. “The only components that aren’t 3D printed are the actuators, tendons, electronics, batteries, sensors, and the nuts and bolts. We are an extreme example of final use 3D printing.”
Unlimited Tomorrow’s website lists TrueLimb’s cost as “as low as $7,995.” When you consider the customization and capabilities of the prosthetic, this is incredibly low. According to LaChappelle, the company created a muscle sensor that picks up muscle movement at a higher resolution than the industry standard electromyography sensors. The sensors read signals from nerves in the residual limb used to control motions like fingers bending. This means that when a user thinks about bending a finger, the nerve fires and the prosthetic’s sensors can detect the signal and translate it into the action.
“Working with children using our device, I’ve witnessed a physical moment where the brain “clicks” and starts moving the hand rather than focusing on moving the muscles,” LaChappelle said.
The cost savings come both from the direct-to-consumer model and the fact that Unlimited Tomorrow doesn’t use any outside suppliers. “We create every piece of our product,” LaChappelle said. “We don’t rely on another prosthetic manufacturer to make expensive sensors or electronics. By going direct to consumer, we cut out all the middlemen that usually drive costs up.” Similar devices on the market can cost up to $100,000.
Unlimited Tomorrow is primarily focused on making prosthetics for kids; when they outgrow their first TrueLimb, they send it back, where the company upcycles the expensive quality components and integrates them into a new customized device.
Unlimited Tomorrow isn’t the first to use 3D printing for prosthetics. Florida-based Limbitless Solutions does so too, and industry experts believe the technology is the future of artificial limbs.
“I am constantly blown away by this tech,” LaChappelle said. “We look at technology as the means to augment the human body and empower people.”
Image Credit: Unlimited Tomorrow Continue reading
#437150 AI Is Getting More Creative. But Who ...
Creativity is a trait that makes humans unique from other species. We alone have the ability to make music and art that speak to our experiences or illuminate truths about our world. But suddenly, humans’ artistic abilities have some competition—and from a decidedly non-human source.
Over the last couple years there have been some remarkable examples of art produced by deep learning algorithms. They have challenged the notion of an elusive definition of creativity and put into perspective how professionals can use artificial intelligence to enhance their abilities and produce beyond the known boundaries.
But when creativity is the result of code written by a programmer, using a format given by a software engineer, featuring private and public datasets, how do we assign ownership of AI-generated content, and particularly that of artwork? McKinsey estimates AI will annually generate value of $3.5 to $5.8 trillion across various sectors.
In 2018, a portrait that was christened Edmond de Belamy was made in a French art collective called Obvious. It used a database with 15,000 portraits from the 1300s to the 1900s to train a deep learning algorithm to produce a unique portrait. The painting sold for $432,500 in a New York auction. Similarly, a program called Aiva, trained on thousands of classical compositions, has released albums whose pieces are being used by ad agencies and movies.
The datasets used by these algorithms were different, but behind both there was a programmer who changed the brush strokes or musical notes into lines of code and a data scientist or engineer who fitted and “curated” the datasets to use for the model. There could also have been user-based input, and the output may be biased towards certain styles or unintentionally infringe on similar pieces of art. This shows that there are many collaborators with distinct roles in producing AI-generated content, and it’s important to discuss how they can protect their proprietary interests.
A perspective article published in Nature Machine Intelligence by Jason K. Eshraghian in March looks into how AI artists and the collaborators involved should assess their ownership, laying out some guiding principles that are “only applicable for as long as AI does not have legal parenthood, the way humans and corporations are accorded.”
Before looking at how collaborators can protect their interests, it’s useful to understand the basic requirements of copyright law. The artwork in question must be an “original work of authorship fixed in a tangible medium.” Given this principle, the author asked whether it’s possible for AI to exercise creativity, skill, or any other indicator of originality. The answer is still straightforward—no—or at least not yet. Currently, AI’s range of creativity doesn’t exceed the standard used by the US Copyright Office, which states that copyright law protects the “fruits of intellectual labor founded in the creative powers of the mind.”
Due to the current limitations of narrow AI, it must have some form of initial input that helps develop its ability to create. At the moment AI is a tool that can be used to produce creative work in the same way that a video camera is a tool used to film creative content. Video producers don’t need to comprehend the inner workings of their cameras; as long as their content shows creativity and originality, they have a proprietary claim over their creations.
The same concept applies to programmers developing a neural network. As long as the dataset they use as input yields an original and creative result, it will be protected by copyright law; they don’t need to understand the high-level mathematics, which in this case are often black box algorithms whose output it’s impossible to analyze.
Will robots and algorithms eventually be treated as creative sources able to own copyrights? The author pointed to the recent patent case of Warner-Lambert Co Ltd versus Generics where Lord Briggs, Justice of the Supreme Court of the UK, determined that “the court is well versed in identifying the governing mind of a corporation and, when the need arises, will no doubt be able to do the same for robots.”
In the meantime, Dr. Eshraghian suggests four guiding principles to allow artists who collaborate with AI to protect themselves.
First, programmers need to document their process through online code repositories like GitHub or BitBucket.
Second, data engineers should also document and catalog their datasets and the process they used to curate their models, indicating selectivity in their criteria as much as possible to demonstrate their involvement and creativity.
Third, in cases where user data is utilized, the engineer should “catalog all runs of the program” to distinguish the data selection process. This could be interpreted as a way of determining whether user-based input has a right to claim the copyright too.
Finally, the output should avoid infringing on others’ content through methods like reverse image searches and version control, as mentioned above.
AI-generated artwork is still a very new concept, and the ambiguous copyright laws around it give a lot of flexibility to AI artists and programmers worldwide. The guiding principles Eshraghian lays out will hopefully shed some light on the legislation we’ll eventually need for this kind of art, and start an important conversation between all the stakeholders involved.
Image Credit: Wikimedia Commons Continue reading