Tag Archives: years

#436200 AI and the Future of Work: The Economic ...

This week at MIT, academics and industry officials compared notes, studies, and predictions about AI and the future of work. During the discussions, an insurance company executive shared details about one AI program that rolled out at his firm earlier this year. A chatbot the company introduced, the executive said, now handles 150,000 calls per month.

Later in the day, a panelist—David Fanning, founder of PBS’s Frontline—remarked that this statistic is emblematic of broader fears he saw when reporting a new Frontline documentary about AI. “People are scared,” Fanning said of the public’s AI anxiety.

Fanning was part of a daylong symposium about AI’s economic consequences—good, bad, and otherwise—convened by MIT’s Task Force on the Work of the Future.

“Dig into every industry, and you’ll find AI changing the nature of work,” said Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). She cited recent McKinsey research that found 45 percent of the work people are paid to do today can be automated with currently available technologies. Those activities, McKinsey found, represent some US $2 trillion in wages.

However, the threat of automation—whether by AI or other technologies—isn’t as new as technologists on America’s coasts seem to believe, said panelist Fred Goff, CEO of Jobcase, Inc.

“If you live in Detroit or Toledo, where I come from, technology has been displacing jobs for the last half-century,” Goff said. “I don’t think that most people in this country have the increased anxiety that the coasts do, because they’ve been living this.”

Goff added that the challenge AI poses for the workforce is not, as he put it, “getting coal miners to code.” Rather, he said, as AI automates some jobs, it will also open opportunities for “reskilling” that may have nothing to do with AI or automation. He touted trade schools—teaching skills like welding, plumbing, and electrical work—and certification programs for sales industry software packages like Salesforce.

On the other hand, a documentarian who reported another recent program on AI—Krishna Andavolu, senior correspondent for Vice Media—said “reskilling” may not be an easy answer.

“People in rooms like this … don’t realize that a lot of people don’t want to work that much,” Andavolu said. “They’re not driven by passion for their career, they’re driven by passion for life. We’re telling a lot of these workers that they need to reskill. But to a lot of people that sounds like, ‘I’ve got to work twice as hard for what I have now.’ That sounds scary. We underestimate that at our peril.”

Part of the problem with “reskilling,” Andavolu said, is that some high-growth industries involve caregiving for seniors and in medical facilities—roles which are traditionally considered “feminized” careers. Destigmatizing these jobs, and increasing the pay to match the salaries of displaced jobs like long-haul truck drivers, is another challenge.

Daron Acemoglu, MIT Institute Professor of Economics, faulted the comparably slim funding of academic research into AI.

“There is nothing preordained about the progress of technology,” he said. Computers, the Internet, antibiotics, and sensors all grew out of government and academic research programs. What he called the “blue-sky thinking” of non-corporate AI research can also develop applications that are not purely focused on maximizing profits.

American companies, Acemoglu said, get tax breaks for capital R&D—but not for developing new technologies for their employees. “We turn around and [tell companies], ‘Use your technologies to empower workers,’” he said. “But why should they do that? Hiring workers is expensive in many ways. And we’re subsidizing capital.”

Said Sarita Gupta, director of the Ford Foundation’s Future of Work(ers) Program, “Low and middle income workers have for over 30 years been experiencing stagnant and declining pay, shrinking benefits, and less power on the job. Now technology is brilliant at enabling scale. But the question we sit with is—how do we make sure that we’re not scaling these longstanding problems?”

Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said AI may not reduce the number of jobs available in the workplace today. But the quality of those jobs is another story. He cited the Dutch economist Jan Tinbergen who decades ago said that “Inequality is a race between technology and education.”

McAfee said, ultimately, the time to solve the economic problems AI poses for workers in the United States is when the U.S. economy is doing well—like right now.

“We do have the wind at our backs,” said Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future.

“We have some breathing room right now,” McAfee agreed. “Economic growth has been pretty good. Unemployment is pretty low. Interest rates are very, very low. We might not have that war chest in the future.” Continue reading

Posted in Human Robots

#436188 The Blogger Behind “AI ...

Sure, artificial intelligence is transforming the world’s societies and economies—but can an AI come up with plausible ideas for a Halloween costume?

Janelle Shane has been asking such probing questions since she started her AI Weirdness blog in 2016. She specializes in training neural networks (which underpin most of today’s machine learning techniques) on quirky data sets such as compilations of knitting instructions, ice cream flavors, and names of paint colors. Then she asks the neural net to generate its own contributions to these categories—and hilarity ensues. AI is not likely to disrupt the paint industry with names like “Ronching Blue,” “Dorkwood,” and “Turdly.”

Shane’s antics have a serious purpose. She aims to illustrate the serious limitations of today’s AI, and to counteract the prevailing narrative that describes AI as well on its way to superintelligence and complete human domination. “The danger of AI is not that it’s too smart,” Shane writes in her new book, “but that it’s not smart enough.”

The book, which came out on Tuesday, is called You Look Like a Thing and I Love You. It takes its odd title from a list of AI-generated pick-up lines, all of which would at least get a person’s attention if shouted, preferably by a robot, in a crowded bar. Shane’s book is shot through with her trademark absurdist humor, but it also contains real explanations of machine learning concepts and techniques. It’s a painless way to take AI 101.

She spoke with IEEE Spectrum about the perils of placing too much trust in AI systems, the strange AI phenomenon of “giraffing,” and her next potential Halloween costume.

Janelle Shane on . . .

The un-delicious origin of her blog
“The narrower the problem, the smarter the AI will seem”
Why overestimating AI is dangerous
Giraffing!
Machine and human creativity

The un-delicious origin of her blog IEEE Spectrum: You studied electrical engineering as an undergrad, then got a master’s degree in physics. How did that lead to you becoming the comedian of AI?
Janelle Shane: I’ve been interested in machine learning since freshman year of college. During orientation at Michigan State, a professor who worked on evolutionary algorithms gave a talk about his work. It was full of the most interesting anecdotes–some of which I’ve used in my book. He told an anecdote about people setting up a machine learning algorithm to do lens design, and the algorithm did end up designing an optical system that works… except one of the lenses was 50 feet thick, because they didn’t specify that it couldn’t do that.
I started working in his lab on optics, doing ultra-short laser pulse work. I ended up doing a lot more optics than machine learning, but I always found it interesting. One day I came across a list of recipes that someone had generated using a neural net, and I thought it was hilarious and remembered why I thought machine learning was so cool. That was in 2016, ages ago in machine learning land.
Spectrum: So you decided to “establish weirdness as your goal” for your blog. What was the first weird experiment that you blogged about?
Shane: It was generating cookbook recipes. The neural net came up with ingredients like: “Take ¼ pounds of bones or fresh bread.” That recipe started out: “Brown the salmon in oil, add creamed meat to the mixture.” It was making mistakes that showed the thing had no memory at all.
Spectrum: You say in the book that you can learn a lot about AI by giving it a task and watching it flail. What do you learn?
Shane: One thing you learn is how much it relies on surface appearances rather than deep understanding. With the recipes, for example: It got the structure of title, category, ingredients, instructions, yield at the end. But when you look more closely, it has instructions like “Fold the water and roll it into cubes.” So clearly this thing does not understand water, let alone the other things. It’s recognizing certain phrases that tend to occur, but it doesn’t have a concept that these recipes are describing something real. You start to realize how very narrow the algorithms in this world are. They only know exactly what we tell them in our data set.
BACK TO TOP↑ “The narrower the problem, the smarter the AI will seem” Spectrum: That makes me think of DeepMind’s AlphaGo, which was universally hailed as a triumph for AI. It can play the game of Go better than any human, but it doesn’t know what Go is. It doesn’t know that it’s playing a game.
Shane: It doesn’t know what a human is, or if it’s playing against a human or another program. That’s also a nice illustration of how well these algorithms do when they have a really narrow and well-defined problem.
The narrower the problem, the smarter the AI will seem. If it’s not just doing something repeatedly but instead has to understand something, coherence goes down. For example, take an algorithm that can generate images of objects. If the algorithm is restricted to birds, it could do a recognizable bird. If this same algorithm is asked to generate images of any animal, if its task is that broad, the bird it generates becomes an unrecognizable brown feathered smear against a green background.
Spectrum: That sounds… disturbing.
Shane: It’s disturbing in a weird amusing way. What’s really disturbing is the humans it generates. It hasn’t seen them enough times to have a good representation, so you end up with an amorphous, usually pale-faced thing with way too many orifices. If you asked it to generate an image of a person eating pizza, you’ll have blocks of pizza texture floating around. But if you give that image to an image-recognition algorithm that was trained on that same data set, it will say, “Oh yes, that’s a person eating pizza.”
BACK TO TOP↑ Why overestimating AI is dangerous Spectrum: Do you see it as your role to puncture the AI hype?
Shane: I do see it that way. Not a lot of people are bringing out this side of AI. When I first started posting my results, I’d get people saying, “I don’t understand, this is AI, shouldn’t it be better than this? Why doesn't it understand?” Many of the impressive examples of AI have a really narrow task, or they’ve been set up to hide how little understanding it has. There’s a motivation, especially among people selling products based on AI, to represent the AI as more competent and understanding than it actually is.
Spectrum: If people overestimate the abilities of AI, what risk does that pose?
Shane: I worry when I see people trusting AI with decisions it can’t handle, like hiring decisions or decisions about moderating content. These are really tough tasks for AI to do well on. There are going to be a lot of glitches. I see people saying, “The computer decided this so it must be unbiased, it must be objective.”

“If the algorithm’s task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias.”
—Janelle Shane, AI Weirdness blogger
That’s another thing I find myself highlighting in the work I’m doing. If the data includes bias, the algorithm will copy that bias. You can’t tell it not to be biased, because it doesn’t understand what bias is. I think that message is an important one for people to understand.
If there’s bias to be found, the algorithm is going to go after it. It’s like, “Thank goodness, finally a signal that’s reliable.” But for a tough problem like: Look at these resumes and decide who’s best for the job. If its task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias. There’s an example in the book of a hiring algorithm that Amazon was developing that discriminated against women, because the historical data it was trained on had that gender bias.
Spectrum: What are the other downsides of using AI systems that don’t really understand their tasks?
Shane: There is a risk in putting too much trust in AI and not examining its decisions. Another issue is that it can solve the wrong problems, without anyone realizing it. There have been a couple of cases in medicine. For example, there was an algorithm that was trained to recognize things like skin cancer. But instead of recognizing the actual skin condition, it latched onto signals like the markings a surgeon makes on the skin, or a ruler placed there for scale. It was treating those things as a sign of skin cancer. It’s another indication that these algorithms don’t understand what they’re looking at and what the goal really is.
BACK TO TOP↑ Giraffing Spectrum: In your blog, you often have neural nets generate names for things—such as ice cream flavors, paint colors, cats, mushrooms, and types of apples. How do you decide on topics?
Shane: Quite often it’s because someone has written in with an idea or a data set. They’ll say something like, “I’m the MIT librarian and I have a whole list of MIT thesis titles.” That one was delightful. Or they’ll say, “We are a high school robotics team, and we know where there’s a list of robotics team names.” It’s fun to peek into a different world. I have to be careful that I’m not making fun of the naming conventions in the field. But there’s a lot of humor simply in the neural net’s complete failure to understand. Puns in particular—it really struggles with puns.
Spectrum: Your blog is quite absurd, but it strikes me that machine learning is often absurd in itself. Can you explain the concept of giraffing?
Shane: This concept was originally introduced by [internet security expert] Melissa Elliott. She proposed this phrase as a way to describe the algorithms’ tendency to see giraffes way more often than would be likely in the real world. She posted a whole bunch of examples, like a photo of an empty field in which an image-recognition algorithm has confidently reported that there are giraffes. Why does it think giraffes are present so often when they’re actually really rare? Because they’re trained on data sets from online. People tend to say, “Hey look, a giraffe!” And then take a photo and share it. They don’t do that so often when they see an empty field with rocks.
There’s also a chatbot that has a delightful quirk. If you show it some photo and ask it how many giraffes are in the picture, it will always answer with some non zero number. This quirk comes from the way the training data was generated: These were questions asked and answered by humans online. People tended not to ask the question “How many giraffes are there?” when the answer was zero. So you can show it a picture of someone holding a Wii remote. If you ask it how many giraffes are in the picture, it will say two.
BACK TO TOP↑ Machine and human creativity Spectrum: AI can be absurd, and maybe also creative. But you make the point that AI art projects are really human-AI collaborations: Collecting the data set, training the algorithm, and curating the output are all artistic acts on the part of the human. Do you see your work as a human-AI art project?
Shane: Yes, I think there is artistic intent in my work; you could call it literary or visual. It’s not so interesting to just take a pre-trained algorithm that’s been trained on utilitarian data, and tell it to generate a bunch of stuff. Even if the algorithm isn’t one that I’ve trained myself, I think about, what is it doing that’s interesting, what kind of story can I tell around it, and what do I want to show people.

The Halloween costume algorithm “was able to draw on its knowledge of which words are related to suggest things like sexy barnacle.”
—Janelle Shane, AI Weirdness blogger
Spectrum: For the past three years you’ve been getting neural nets to generate ideas for Halloween costumes. As language models have gotten dramatically better over the past three years, are the costume suggestions getting less absurd?
Shane: Yes. Before I would get a lot more nonsense words. This time I got phrases that were related to real things in the data set. I don’t believe the training data had the words Flying Dutchman or barnacle. But it was able to draw on its knowledge of which words are related to suggest things like sexy barnacle and sexy Flying Dutchman.
Spectrum: This year, I saw on Twitter that someone made the gothy giraffe costume happen. Would you ever dress up for Halloween in a costume that the neural net suggested?
Shane: I think that would be fun. But there would be some challenges. I would love to go as the sexy Flying Dutchman. But my ambition may constrict me to do something more like a list of leg parts.
BACK TO TOP↑ Continue reading

Posted in Human Robots

#436178 Within 10 Years, We’ll Travel by ...

What’s faster than autonomous vehicles and flying cars?

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX’s Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes.

But wait, it gets even better…

As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of “robotic avatars” will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.

Let’s dive in.

Hyperloop One: LA to SF in 35 Minutes
Did you know that Hyperloop was the brainchild of Elon Musk? Just one in a series of transportation innovations from a man determined to leave his mark on the industry.

In 2013, in an attempt to shorten the long commute between Los Angeles and San Francisco, the California state legislature proposed a $68 billion budget allocation for what appeared to be the slowest and most expensive bullet train in history.

Musk was outraged. The cost was too high, the train too sluggish. Teaming up with a group of engineers from Tesla and SpaceX, he published a 58-page concept paper for “The Hyperloop,” a high-speed transportation network that used magnetic levitation to propel passenger pods down vacuum tubes at speeds of up to 670 mph. If successful, it would zip you across California in 35 minutes—just enough time to watch your favorite sitcom.

In January 2013, venture capitalist Shervin Pishevar, with Musk’s blessing, started Hyperloop One with myself, Jim Messina (former White House Deputy Chief of Staff for President Obama), and tech entrepreneurs Joe Lonsdale and David Sacks as founding board members. A couple of years after that, the Virgin Group invested in this idea, Richard Branson was elected chairman, and Virgin Hyperloop One was born.

“The Hyperloop exists,” says Josh Giegel, co-founder and chief technology officer of Hyperloop One, “because of the rapid acceleration of power electronics, computational modeling, material sciences, and 3D printing.”

Thanks to these convergences, there are now ten major Hyperloop One projects—in various stages of development—spread across the globe. Chicago to DC in 35 minutes. Pune to Mumbai in 25 minutes. According to Giegel, “Hyperloop is targeting certification in 2023. By 2025, the company plans to have multiple projects under construction and running initial passenger testing.”

So think about this timetable: Autonomous car rollouts by 2020. Hyperloop certification and aerial ridesharing by 2023. By 2025—going on vacation might have a totally different meaning. Going to work most definitely will.

But what’s faster than Hyperloop?

Rocket Travel
As if autonomous vehicles, flying cars, and Hyperloop weren’t enough, in September of 2017, speaking at the International Astronautical Congress in Adelaide, Australia, Musk promised that for the price of an economy airline ticket, his rockets will fly you “anywhere on Earth in under an hour.”

Musk wants to use SpaceX’s megarocket, Starship, which was designed to take humans to Mars, for terrestrial passenger delivery. The Starship travels at 17,500 mph. It’s an order of magnitude faster than the supersonic jet Concorde.

Think about what this actually means: New York to Shanghai in 39 minutes. London to Dubai in 29 minutes. Hong Kong to Singapore in 22 minutes.

So how real is the Starship?

“We could probably demonstrate this [technology] in three years,” Musk explained, “but it’s going to take a while to get the safety right. It’s a high bar. Aviation is incredibly safe. You’re safer on an airplane than you are at home.”

That demonstration is proceeding as planned. In September 2017, Musk announced his intentions to retire his current rocket fleet, both the Falcon 9 and Falcon Heavy, and replace them with the Starships in the 2020s.

Less than a year later, LA mayor Eric Garcetti tweeted that SpaceX was planning to break ground on an 18-acre rocket production facility near the port of Los Angeles. And April of this year marked an even bigger milestone: the very first test flights of the rocket.

Thus, sometime in the next decade or so, “off to Europe for lunch” may become a standard part of our lexicon.

Avatars
Wait, wait, there’s one more thing.

While the technologies we’ve discussed will decimate the traditional transportation industry, there’s something on the horizon that will disrupt travel itself. What if, to get from A to B, you didn’t have to move your body? What if you could quote Captain Kirk and just say “Beam me up, Scotty”?

Well, shy of the Star Trek transporter, there’s the world of avatars.

An avatar is a second self, typically in one of two forms. The digital version has been around for a couple of decades. It emerged from the video game industry and was popularized by virtual world sites like Second Life and books-turned-blockbusters like Ready Player One.

A VR headset teleports your eyes and ears to another location, while a set of haptic sensors shifts your sense of touch. Suddenly, you’re inside an avatar inside a virtual world. As you move in the real world, your avatar moves in the virtual.

Use this technology to give a lecture and you can do it from the comfort of your living room, skipping the trip to the airport, the cross-country flight, and the ride to the conference center.

Robots are the second form of avatars. Imagine a humanoid robot that you can occupy at will. Maybe, in a city far from home, you’ve rented the bot by the minute—via a different kind of ridesharing company—or maybe you have spare robot avatars located around the country.

Either way, put on VR goggles and a haptic suit, and you can teleport your senses into that robot. This allows you to walk around, shake hands, and take action—all without leaving your home.

And like the rest of the tech we’ve been talking about, even this future isn’t far away.

In 2018, entrepreneur Dr. Harry Kloor recommended to All Nippon Airways (ANA), Japan’s largest airline, the design of an Avatar XPRIZE. ANA then funded this vision to the tune of $10 million to speed the development of robotic avatars. Why? Because ANA knows this is one of the technologies likely to disrupt their own airline industry, and they want to be ready.

ANA recently announced its “newme” robot that humans can use to virtually explore new places. The colorful robots have Roomba-like wheeled bases and cameras mounted around eye-level, which capture surroundings viewable through VR headsets.

If the robot was stationed in your parents’ home, you could cruise around the rooms and chat with your family at any time of day. After revealing the technology at Tokyo’s Combined Exhibition of Advanced Technologies in October, ANA plans to deploy 1,000 newme robots by 2020.

With virtual avatars like newme, geography, distance, and cost will no longer limit our travel choices. From attractions like the Eiffel Tower or the pyramids of Egypt to unreachable destinations like the moon or deep sea, we will be able to transcend our own physical limits, explore the world and outer space, and access nearly any experience imaginable.

Final Thoughts
Individual car ownership has enjoyed over a century of ascendancy and dominance.

The first real threat it faced—today’s ride-sharing model—only showed up in the last decade. But that ridesharing model won’t even get ten years to dominate. Already, it’s on the brink of autonomous car displacement, which is on the brink of flying car disruption, which is on the brink of Hyperloop and rockets-to-anywhere decimation. Plus, avatars.

The most important part: All of this change will happen over the next ten years. Welcome to a future of human presence where the only constant is rapid change.

Note: This article—an excerpt from my next book The Future Is Faster Than You Think, co-authored with Steven Kotler, to be released January 28th, 2020—originally appeared on my tech blog at diamandis.com. Read the original article here.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Virgin Hyperloop One Continue reading

Posted in Human Robots

#436151 Natural Language Processing Dates Back ...

This is part one of a six-part series on the history of natural language processing.

We’re in the middle of a boom time for natural language processing (NLP), the field of computer science that focuses on linguistic interactions between humans and machines. Thanks to advances in machine learning over the past decade, we’ve seen vast improvements in speech recognition and machine translation software. Language generators are now good enough to write coherent news articles, and virtual agents like Siri and Alexa are becoming part of our daily lives.

Most trace the origins of this field back to the beginning of the computer age, when Alan Turing, writing in 1950, imagined a smart machine that could interact fluently with a human via typed text on a screen. For this reason, machine-generated language is mostly understood as a digital phenomenon—and a central goal of artificial intelligence (AI) research.

This six-part series will challenge that common understanding of NLP. In fact, attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

Attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

While specific technologies have changed over time, the basic idea of treating language as a material that can be artificially manipulated by rule-based systems has been pursued by many people in many cultures and for many different reasons. These historical experiments reveal the promise and perils of attempting to simulate human language in non-human ways—and they hold lessons for today’s practitioners of cutting-edge NLP techniques.

The story begins in medieval Spain. In the late 1200s, a Jewish mystic by the name of Abraham Abulafia sat down at a table in his small house in Barcelona, picked up a quill, dipped it in ink, and began combining the letters of the Hebrew alphabet in strange and seemingly random ways. Aleph with Bet, Bet with Gimmel, Gimmel with Aleph and Bet, and so on.

Abulafia called this practice “the science of the combination of letters.” He wasn’t actually combining letters at random; instead he was carefully following a secret set of rules that he had devised while studying an ancient Kabbalistic text called the Sefer Yetsirah. This book describes how God created “all that is formed and all that is spoken” by combining Hebrew letters according to sacred formulas. In one section, God exhausts all possible two-letter combinations of the 22 Hebrew letters.

By studying the Sefer Yetsirah, Abulafia gained the insight that linguistic symbols can be manipulated with formal rules in order to create new, interesting, insightful sentences. To this end, he spent months generating thousands of combinations of the 22 letters of the Hebrew alphabet and eventually emerged with a series of books that he claimed were endowed with prophetic wisdom.

For Abulafia, generating language according to divine rules offered insight into the sacred and the unknown, or as he put it, allowed him to “grasp things which by human tradition or by thyself thou would not be able to know.”

Combining letters to generate language allows thou to “grasp things which by human tradition or by thyself thou would not be able to know.”
—Abraham Abulafia, mystic

But other Jewish scholars considered this rudimentary language generation a dangerous act that bordered on the profane. The Talmud tells stories of rabbis who, by the magical act of permuting language according to the formulas set out in the Sefer Yetsirah, created artificial creatures called golems. In these tales, rabbis manipulated the letters of the Hebrew alphabet to replicate God’s act of creation, using the sacred formulas to imbue inanimate objects with life.

In some of these myths, the rabbis used this skill for practical reasons, to make animals to eat when hungry or servants to help them with domestic duties. But many of these golem stories end badly. In one particularly well-known fable, Judah Loew ben Bezalel, the 16th century rabbi of Prague, used the sacred practice of letter combinatorics to conjure a golem to protect the Jewish community from antisemitic attacks, only to see the golem turn violently on him instead.

This “science of the combination of letters” was a rudimentary form of natural language processing, as it involved combining letters of the Hebrew alphabet according to specific rules. For Kabbalists, it was a double-edged sword: a way to access new forms of knowledge and wisdom, but also an inherently dangerous practice that could bring about unintended consequences.

This tension reappears throughout the long history of language processing, and still echoes in discussions about the most cutting-edge NLP technology of our digital era.

This is the first installment of a six-part series on the history of natural language processing. Come back next Monday for part two, “In the 17th Century, Leibniz Dreamed of a Machine That Could Calculate Ideas​.”

You can also check out our prior series on the untold history of AI. Continue reading

Posted in Human Robots

#436149 Blue Frog Robotics Answers (Some of) Our ...

In September of 2015, Buddy the social home robot closed its Indiegogo crowdfunding campaign more than 600 percent over its funding goal. A thousand people pledged for a robot originally scheduled to be delivered in December of 2016. But nearly three years later, the future of Buddy is still unclear. Last May, Blue Frog Robotics asked for forgiveness from its backers and announced the launch of an “equity crowdfunding campaign” to try to raise the additional funding necessary to deliver the robot in April of 2020.

By the time the crowdfunding campaign launched in August, the delivery date had slipped again, to September 2020, even as Blue Frog attempted to draw investors by estimating that sales of Buddy would “increase from 2000 robots in 2020 to 20,000 in 2023.” Blue Frog’s most recent communication with backers, in September, mentions a new CTO and a North American office, but does little to reassure backers of Buddy that they’ll ever be receiving their robot.

Backers of the robot are understandably concerned about the future of Buddy, so we sent a series of questions to the founder and CEO of Blue Frog Robotics, Rodolphe Hasselvander.

We’ve edited this interview slightly for clarity, but we should also note that Hasselvander was unable to provide answers to every question. In particular, we asked for some basic information about Blue Frog’s near-term financial plans, on which the entire future of Buddy seems to depend. We’ve left those questions in the interview anyway, along with Hasselvander’s response.

1. At this point, how much additional funding is necessary to deliver Buddy to backers?
2. Assuming funding is successful, when can backers expect to receive Buddy?
3. What happens if the fundraising goal is not met?
4. You estimate that sales of Buddy will increase 10x over three years. What is this estimate based on?

Rodolphe Hasselvander: Regarding the questions 1-4, unfortunately, as we are fundraising in a Regulation D, we do not comment on prospect, customer data, sales forecasts, or figures. Please refer to our press release here to have information about the fundraising.

5. Do you feel that you are currently being transparent enough about this process to satisfy backers?
6. Buddy’s launch date has moved from April 2020 to September 2020 over the last four months. Why should backers remain confident about Buddy’s schedule?

Since the last newsletter, we haven’t changed our communication, the backers will be the first to receive their Buddy, and we plan an official launch in September 2020.

7. What is the goal of My Buddy World?

At Blue Frog, we think that matching a great product with a big market can only happen through continual experimentation, iteration and incorporation of customer feedback. That’s why we created the forum My Buddy World. It has been designed for our Buddy Community to join us, discuss the world’s first emotional robot, and create with us. The objective is to deepen our conversation with Buddy’s fans and users, stay agile in testing our hypothesis and validate our product-market fit. We trust the value of collaboration. Behind Buddy, there is a team of roboticists, engineers, and programmers that are eager to know more about our consumers’ needs and are excited to work with them to create the perfect human/robot experience.

8. How is the current version of Buddy different from the 2015 version that backers pledged for during the successful crowdfunding campaign, in both hardware and software?

We have completely revised some parts of Buddy as well as replaced and/or added more accurate and reliable components to ensure we fully satisfy our customers’ requirements for a mature and high-quality robot from day one. We sourced more innovative components to make sure that Buddy has the most up-to-date technologies such as adding four microphones, a high def thermal matrix, a 3D camera, an 8-megapixel RGB camera, time-of-flight sensors, and touch sensors.
If you want more info, we just posted an article about what is Buddy here.

9. Will the version of Buddy that ships to backers in 2020 do everything that that was shown in the original crowdfunding video?

Concerning the capabilities of Buddy regarding the video published on YouTube, I confirm that Buddy will be able to do everything you can see, like patrol autonomously and secure your home, telepresence, mathematics applications, interactive stories for children, IoT/smart home management, face recognition, alarm clock, reminder, message/photo sharing, music, hands free call, people following, games like hide and seek (and more). In addition, everyone will be able to create their own apps thanks to the “BuddyLab” application.

10. What makes you confident that Buddy will be successful when Jibo, Kuri, and other social robots have not?

Consumer robotics is a new market. Some people think it is a tough one. But we, at Blue Frog Robotics, believe it is a path of learning, understanding, and finding new ways to serve consumers. Here are the five key factors that will make Buddy successful.

1) A market-fit robot

Blue Frog Robotics is a consumer-centric company. We know that a successful business model and a compelling fit to market Buddy must come up from solving consumers’ frustrations and problems in a way that’s new and exciting. We started from there.

By leveraged existing research and syndicated consumer data sets to understand our customers’ needs and aspirations, we get that creating a robot is not about the best tech innovation and features, but always about how well technology becomes a service to one’s basic human needs and assets: convenience, connection, security, fun, self-improvement, and time. To answer to these consumers’ needs and wants, we designed an all-in-one robot with four vital capabilities: intelligence, emotionality, mobility, and customization.

With his multi-purpose brain, he addresses a broad range of needs in modern-day life, from securing homes to carrying out his owners’ daily activities, from helping people with disabilities to educating children, from entertaining to just becoming a robot friend.

Buddy is a disruptive innovative robot that is about to transform the way we live, learn, utilize information, play, and even care about our health.
2) Endless possibilities

One of the major advantages of Buddy is his adaptability. Beyond to be adorable, playful, talkative, and to accompany anyone in their daily life at home whether you are comfortable with technology or not, he offers via his platform applications to engage his owners in a wide range of activities. From fitness to cooking, from health monitoring to education, from games to meditation, the combination of intelligence, sensors, mobility, multi-touch panel opens endless possibilities for consumers and organizations to adapt their Buddy to their own needs.
3) An affordable price

Buddy will be the first robot combining smart, social, and mobile capabilities and a developed platform with a personality to enter the U.S. market at affordable price.

Our competitors are social or assistant robots but rarely both. Competitors differentiate themselves by features: mobile, non-mobile; by shapes: humanoid or not; by skills: social versus smart; targeting a specific domain like entertainment, retail assistant, eldercare, or education for children; and by price. Regarding our six competitors: Moorebot, Elli-Q, and Olly are not mobile; Lynx and Nao are in toy category; Pepper is above $10k targeting B2B market; and finally, Temi can’t be considered an emotional robot.
Buddy remains highly differentiated as an all-in-one, best of his class experience, covering the needs for social interactions and assistance of his owners at each stage of their life at an affordable price.

The price range of Buddy will be between US $1700 and $2000.

4) A winning business model

Buddy’s great business model combines hardware, software, and services, and provides game-changing convenience for consumers, organizations, and developers.

Buddy offers a multi-sided value proposition focused on three vertical markets: direct consumers, corporations (healthcare, education, hospitality), and developers. The model creates engagement and sustained usage and produces stable and diverse cash flow.
5) A Passion for people and technology

From day one, we have always believed in the power of our dream: To bring the services and the fun of an emotional robot in every house, every hospital, in every care house. Each day, we refuse to think that we are stuck or limited; we work hard to make Buddy a reality that will help people all over the world and make them smile.

While we certainly appreciate Hasselvander’s consistent optimism and obvious enthusiasm, we’re obligated to point out that some of our most important questions were not directly answered. We haven’t learned anything that makes us all that much more confident that Blue Frog will be able to successfully deliver Buddy this time. Hasselvander also didn’t address our specific question about whether he feels like Blue Frog’s communication strategy with backers has been adequate, which is particularly relevant considering that over the four months between the last two newsletters, Buddy’s launch date slipped by six months.

At this point, all we can do is hope that the strategy Blue Frog has chosen will be successful. We’ll let you know if as soon as we learn more.

[ Buddy ] Continue reading

Posted in Human Robots