Tag Archives: year

#431872 AI Uses Titan Supercomputer to Create ...

You don’t have to dig too deeply into the archive of dystopian science fiction to uncover the horror that intelligent machines might unleash. The Matrix and The Terminator are probably the most well-known examples of self-replicating, intelligent machines attempting to enslave or destroy humanity in the process of building a brave new digital world.
The prospect of artificially intelligent machines creating other artificially intelligent machines took a big step forward in 2017. However, we’re far from the runaway technological singularity futurists are predicting by mid-century or earlier, let alone murderous cyborgs or AI avatar assassins.
The first big boost this year came from Google. The tech giant announced it was developing automated machine learning (AutoML), writing algorithms that can do some of the heavy lifting by identifying the right neural networks for a specific job. Now researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL), using the most powerful supercomputer in the US, have developed an AI system that can generate neural networks as good if not better than any developed by a human in less than a day.
It can take months for the brainiest, best-paid data scientists to develop deep learning software, which sends data through a complex web of mathematical algorithms. The system is modeled after the human brain and known as an artificial neural network. Even Google’s AutoML took weeks to design a superior image recognition system, one of the more standard operations for AI systems today.
Computing Power
Of course, Google Brain project engineers only had access to 800 graphic processing units (GPUs), a type of computer hardware that works especially well for deep learning. Nvidia, which pioneered the development of GPUs, is considered the gold standard in today’s AI hardware architecture. Titan, the supercomputer at ORNL, boasts more than 18,000 GPUs.
The ORNL research team’s algorithm, called MENNDL for Multinode Evolutionary Neural Networks for Deep Learning, isn’t designed to create AI systems that cull cute cat photos from the internet. Instead, MENNDL is a tool for testing and training thousands of potential neural networks to work on unique science problems.
That requires a different approach from the Google and Facebook AI platforms of the world, notes Steven Young, a postdoctoral research associate at ORNL who is on the team that designed MENNDL.
“We’ve discovered that those [neural networks] are very often not the optimal network for a lot of our problems, because our data, while it can be thought of as images, is different,” he explains to Singularity Hub. “These images, and the problems, have very different characteristics from object detection.”
AI for Science
One application of the technology involved a particle physics experiment at the Fermi National Accelerator Laboratory. Fermilab researchers are interested in understanding neutrinos, high-energy subatomic particles that rarely interact with normal matter but could be a key to understanding the early formation of the universe. One Fermilab experiment involves taking a sort of “snapshot” of neutrino interactions.
The team wanted the help of an AI system that could analyze and classify Fermilab’s detector data. MENNDL evaluated 500,000 neural networks in 24 hours. Its final solution proved superior to custom models developed by human scientists.
In another case involving a collaboration with St. Jude Children’s Research Hospital in Memphis, MENNDL improved the error rate of a human-designed algorithm for identifying mitochondria inside 3D electron microscopy images of brain tissue by 30 percent.
“We are able to do better than humans in a fraction of the time at designing networks for these sort of very different datasets that we’re interested in,” Young says.
What makes MENNDL particularly adept is its ability to define the best or most optimal hyperparameters—the key variables—to tackle a particular dataset.
“You don’t always need a big, huge deep network. Sometimes you just need a small network with the right hyperparameters,” Young says.
A Virtual Data Scientist
That’s not dissimilar to the approach of a company called H20.ai, a startup out of Silicon Valley that uses open source machine learning platforms to “democratize” AI. It applies machine learning to create business solutions for Fortune 500 companies, including some of the world’s biggest banks and healthcare companies.
“Our software is more [about] pattern detection, let’s say anti-money laundering or fraud detection or which customer is most likely to churn,” Dr. Arno Candel, chief technology officer at H2O.ai, tells Singularity Hub. “And that kind of insight-generating software is what we call AI here.”
The company’s latest product, Driverless AI, promises to deliver the data scientist equivalent of a chessmaster to its customers (the company claims several such grandmasters in its employ and advisory board). In other words, the system can analyze a raw dataset and, like MENNDL, automatically identify what features should be included in the computer model to make the most of the data based on the best “chess moves” of its grandmasters.
“So we’re using those algorithms, but we’re giving them the human insights from those data scientists, and we automate their thinking,” he explains. “So we created a virtual data scientist that is relentless at trying these ideas.”
Inside the Black Box
Not unlike how the human brain reaches a conclusion, it’s not always possible to understand how a machine, despite being designed by humans, reaches its own solutions. The lack of transparency is often referred to as the AI “black box.” Experts like Young say we can learn something about the evolutionary process of machine learning by generating millions of neural networks and seeing what works well and what doesn’t.
“You’re never going to be able to completely explain what happened, but maybe we can better explain it than we currently can today,” Young says.
Transparency is built into the “thought process” of each particular model generated by Driverless AI, according to Candel.
The computer even explains itself to the user in plain English at each decision point. There is also real-time feedback that allows users to prioritize features, or parameters, to see how the changes improve the accuracy of the model. For example, the system may include data from people in the same zip code as it creates a model to describe customer turnover.
“That’s one of the advantages of our automatic feature engineering: it’s basically mimicking human thinking,” Candel says. “It’s not just neural nets that magically come up with some kind of number, but we’re trying to make it statistically significant.”
Moving Forward
Much digital ink has been spilled over the dearth of skilled data scientists, so automating certain design aspects for developing artificial neural networks makes sense. Experts agree that automation alone won’t solve that particular problem. However, it will free computer scientists to tackle more difficult issues, such as parsing the inherent biases that exist within the data used by machine learning today.
“I think the world has an opportunity to focus more on the meaning of things and not on the laborious tasks of just fitting a model and finding the best features to make that model,” Candel notes. “By automating, we are pushing the burden back for the data scientists to actually do something more meaningful, which is think about the problem and see how you can address it differently to make an even bigger impact.”
The team at ORNL expects it can also make bigger impacts beginning next year when the lab’s next supercomputer, Summit, comes online. While Summit will boast only 4,600 nodes, it will sport the latest and greatest GPU technology from Nvidia and CPUs from IBM. That means it will deliver more than five times the computational performance of Titan, the world’s fifth-most powerful supercomputer today.
“We’ll be able to look at much larger problems on Summit than we were able to with Titan and hopefully get to a solution much faster,” Young says.
It’s all in a day’s work.
Image Credit: Gennady Danilkin / Shutterstock.com Continue reading

Posted in Human Robots

#431866 The Technologies We’ll Have Our Eyes ...

It’s that time of year again when our team has a little fun and throws on our futurist glasses to look ahead at some of the technologies and trends we’re most anticipating next year.
Whether the implications of a technology are vast or it resonates with one of us personally, here’s the list from some of the Singularity Hub team of what we have our eyes on as we enter the new year.
For a little refresher, these were the technologies our team was fired up about at the start of 2017.
Tweet us the technology you’re excited to watch in 2018 at @SingularityHub.
Cryptocurrency and Blockchain
“Given all the noise Bitcoin is making globally in the media, it is driving droves of main street investors to dabble in and learn more about cryptocurrencies. This will continue to raise valuations and drive adoption of blockchain. From Bank of America recently getting a blockchain-based patent approved to the Australian Securities Exchange’s plan to use blockchain, next year is going to be chock-full of these stories. Coindesk even recently spotted a patent filing from Apple involving blockchain. From ‘China’s Ethereum’, NEO, to IOTA to Golem to Qtum, there are a lot of interesting cryptos to follow given the immense numbers of potential applications. Hang on, it’s going to be a bumpy ride in 2018!”
–Kirk Nankivell, Website Manager
There Is No One Technology to Watch
“Next year may be remembered for advances in gene editing, blockchain, AI—or most likely all these and more. There is no single technology to watch. A number of consequential trends are advancing and converging. This general pace of change is exciting, and it also contributes to spiking anxiety. Technology’s invisible lines of force are extending further and faster into our lives and subtly subverting how we view the world and each other in unanticipated ways. Still, all the near-term messiness and volatility, the little and not-so-little dramas, the hype and disillusion, the controversies and conflict, all that smooths out a bit when you take a deep breath and a step back, and it’s my sincere hope and belief the net result will be more beneficial than harmful.”
–Jason Dorrier, Managing Editor
‘Fake News’ Fighting Technology
“It’s been a wild ride for the media this year with the term ‘fake news’ moving from the public’s peripheral and into mainstream vocabulary. The spread of ‘fake news’ is often blamed on media outlets, but social media platforms and search engines are often responsible too. (Facebook still won’t identify as a media company—maybe next year?) Yes, technology can contribute to spreading false information, but it can also help stop it. From technologists who are building in-article ‘trust indicator’ features, to artificial intelligence systems that can both spot and shut down fake news early on, I’m hopeful we can create new solutions to this huge problem. One step further: if publishers step up to fix this we might see some faith restored in the media.”
–Alison E. Berman, Digital Producer
Pay-as-You-Go Home Solar Power
“People in rural African communities are increasingly bypassing electrical grids (which aren’t even an option in many cases) and installing pay-as-you-go solar panels on their homes. The companies offering these services are currently not subject to any regulations, though they’re essentially acting as a utility. As demand for power grows, they’ll have to come up with ways to efficiently scale, and to balance the humanitarian and capitalistic aspects of their work. It’s fascinating to think traditional grids may never be necessary in many areas of the continent thanks to this technology.”
–Vanessa Bates Ramirez, Associate Editor
Virtual Personal Assistants
“AI is clearly going to rule our lives, and in many ways it already makes us look like clumsy apes. Alexa, Siri, and Google Assistant are promising first steps toward a world of computers that understand us and relate to us on an emotional level. I crave the day when my Apple Watch coaches me into healthier habits, lets me know about new concerts nearby, speaks to my self-driving Lyft on my behalf, and can help me respond effectively to aggravating emails based on communication patterns. But let’s not brush aside privacy concerns and the implications of handing over our personal data to megacorporations. The scariest thing here is that privacy laws and advertising ethics do not accommodate this level of intrusive data hoarding.”
–Matthew Straub, Director of Digital Engagement (Hub social media)
Solve for Learning: Educational Apps for Children in Conflict Zones
“I am most excited by exponential technology when it is used to help solve a global grand challenge. Educational apps are currently being developed to help solve for learning by increasing accessibility to learning opportunities for children living in conflict zones. Many children in these areas are not receiving an education, with girls being 2.5 times more likely than boys to be out of school. The EduApp4Syria project is developing apps to help children in Syria and Kashmir learn in their native languages. Mobile phones are increasingly available in these areas, and the apps are available offline for children who do not have consistent access to mobile networks. The apps are low-cost, easily accessible, and scalable educational opportunities.
–Paige Wilcoxson, Director, Curriculum & Learning Design
Image Credit: Triff / Shutterstock.com Continue reading

Posted in Human Robots

#431859 Digitized to Democratized: These Are the ...

“The Six Ds are a chain reaction of technological progression, a road map of rapid development that always leads to enormous upheaval and opportunity.”
–Peter Diamandis and Steven Kotler, Bold
We live in incredible times. News travels the globe in an instant. Music, movies, games, communication, and knowledge are ever-available on always-connected devices. From biotechnology to artificial intelligence, powerful technologies that were once only available to huge organizations and governments are becoming more accessible and affordable thanks to digitization.
The potential for entrepreneurs to disrupt industries and corporate behemoths to unexpectedly go extinct has never been greater.
One hundred or fifty or even twenty years ago, disruption meant coming up with a product or service people needed but didn’t have yet, then finding a way to produce it with higher quality and lower costs than your competitors. This entailed hiring hundreds or thousands of employees, having a large physical space to put them in, and waiting years or even decades for hard work to pay off and products to come to fruition.

“Technology is disrupting traditional industrial processes, and they’re never going back.”

But thanks to digital technologies developing at exponential rates of change, the landscape of 21st-century business has taken on a dramatically different look and feel.
The structure of organizations is changing. Instead of thousands of employees and large physical plants, modern start-ups are small organizations focused on information technologies. They dematerialize what was once physical and create new products and revenue streams in months, sometimes weeks.
It no longer takes a huge corporation to have a huge impact.
Technology is disrupting traditional industrial processes, and they’re never going back. This disruption is filled with opportunity for forward-thinking entrepreneurs.
The secret to positively impacting the lives of millions of people is understanding and internalizing the growth cycle of digital technologies. This growth cycle takes place in six key steps, which Peter Diamandis calls the Six Ds of Exponentials: digitization, deception, disruption, demonetization, dematerialization, and democratization.
According to Diamandis, cofounder and chairman of Singularity University and founder and executive chairman of XPRIZE, when something is digitized it begins to behave like an information technology.

Newly digitized products develop at an exponential pace instead of a linear one, fooling onlookers at first before going on to disrupt companies and whole industries. Before you know it, something that was once expensive and physical is an app that costs a buck.
Newspapers and CDs are two obvious recent examples. The entertainment and media industries are still dealing with the aftermath of digitization as they attempt to transform and update old practices tailored to a bygone era. But it won’t end with digital media. As more of the economy is digitized—from medicine to manufacturing—industries will hop on an exponential curve and be similarly disrupted.
Diamandis’s 6 Ds are critical to understanding and planning for this disruption.
The 6 Ds of Exponential Organizations are Digitized, Deceptive, Disruptive, Demonetized, Dematerialized, and Democratized.

Diamandis uses the contrasting fates of Kodak and Instagram to illustrate the power of the six Ds and exponential thinking.
Kodak invented the digital camera in 1975, but didn’t invest heavily in the new technology, instead sticking with what had always worked: traditional cameras and film. In 1996, Kodak had a $28 billion market capitalization with 95,000 employees.
But the company didn’t pay enough attention to how digitization of their core business was changing it; people were no longer taking pictures in the same way and for the same reasons as before.
After a downward spiral, Kodak went bankrupt in 2012. That same year, Facebook acquired Instagram, a digital photo sharing app, which at the time was a startup with 13 employees. The acquisition’s price tag? $1 billion. And Instagram had been founded only 18 months earlier.
The most ironic piece of this story is that Kodak invented the digital camera; they took the first step toward overhauling the photography industry and ushering it into the modern age, but they were unwilling to disrupt their existing business by taking a risk in what was then uncharted territory. So others did it instead.
The same can happen with any technology that’s just getting off the ground. It’s easy to stop pursuing it in the early part of the exponential curve, when development appears to be moving slowly. But failing to follow through only gives someone else the chance to do it instead.
The Six Ds are a road map showing what can happen when an exponential technology is born. Not every phase is easy, but the results give even small teams the power to change the world in a faster and more impactful way than traditional business ever could.
Image Credit: Mohammed Tareq / Shutterstock Continue reading

Posted in Human Robots

#431817 This Week’s Awesome Stories From ...

BITCOIN
Bitcoin Is a Delusion That Could Conquer the WorldDerek Thompson | The Atlantic“What seems most certain is that the future of money will test our conventional definitions—of currencies, of bubbles, and of initial offerings. What’s happening this month with bitcoin feels like an unsustainable paroxysm. But it’s foolish to try to develop rational models for when such a market will correct itself. Prices, like currencies, are collective illusions.”
SPACE
This Engineer Is Building a DIY Mars Habitat in His BackyardDaniel Oberhaus | Motherboard“For over a year, Raymond and his wife have been running a fully operational, self-sustaining ‘Mars habitat’ in their backyard. They’ve personally sunk around $200,000 into the project and anticipate spending several thousand more before they’re finished. The habitat is the subject of a popularYouTube channel maintained by Raymond, where he essentiallyLARPs the 2015 Matt Damon film The Martian for an audience of over 20,000 loyal followers.”
INTERNET
The FCC Just Voted to Repeal Its Net Neutrality Rules, in a Sweeping Act of DeregulationBrian Fung | The Washington Post“The 3-2 vote, which was along party lines, enabled the FCC’s Republican chairman, AjitPai, to follow through on his promise to repeal the government’s 2015 net neutrality rules, which required Internet providers to treat all websites, large and small, equally.”
GENDER EQUALITY
Sexism’s National Reckoning and the Tech Women Who Blazed the TrailTekla S. Perry | IEEE Spectrum“Cassidy and other women in tech who spoke during the one-day event stressed that the watershed came not because women finally broke the silence about sexual harassment, whatever Time’s editors may believe. The change came because the women were finally listened to and the bad actors faced repercussions.”
FUTURE
These Technologies Will Shape the Future, According to One of Silicon Valley’s Top VC FirmsDaniel Terdiman | Fast Company“The question then, is what are the technologies that are going to drive the future. At Andreessen Horowitz, a picture of that future, at least the next 10 years or so, is coming into focus.During a recent firm summit, Evans laid out his vision for the most significant tech opportunities of the next decade.On the surface, the four areas he identifies–autonomy, mixed-reality, cryptocurrencies, and artificial intelligence–aren’t entirely surprises.”
Image Credit: Solfer / Shutterstock.com Continue reading

Posted in Human Robots

#431678 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Can A.I. Be Taught to Explain Itself?Cliff Kuang | New York Times“Kosinski’s results suggested something stranger: that artificial intelligences often excel by developing whole new ways of seeing, or even thinking, that are inscrutable to us. It’s a more profound version of what’s often called the ‘black box’ problem—the inability to discern exactly what machines are doing when they’re teaching themselves novel skills—and it has become a central concern in artificial-intelligence research.”
BIOTECH
Semi-Synthetic Life Form Now Fully Armed and OperationalAntonio Regalado | MIT Technology Review “By this year, the team had devised a more stable bacterium. But it wasn’t enough to endow the germ with a partly alien code—it needed to use that code to make a partly alien protein. That’s what Romesberg’s team, reporting today in the journal Nature, says it has done.”
COMPUTING
4 Strange New Ways to ComputeSamuel K. Moore | IEEE Spectrum “With Moore’s Law slowing, engineers have been taking a cold hard look at what will keep computing going when it’s gone…What follows includes a taste of both the strange and the potentially impactful.”
INNOVATION
Google X and the Science of Radical CreativityDerek Thompson | The Atlantic “But what X is attempting is nonetheless audacious. It is investing in both invention and innovation. Its founders hope to demystify and routinize the entire process of making a technological breakthrough—to nurture each moonshot, from question to idea to discovery to product—and, in so doing, to write an operator’s manual for radical creativity.”
PRIVACY AND SECURITY
Uber Paid Hackers to Delete Stolen Data on 57 Million PeopleEric Newcomer | Bloomberg “Hackers stole the personal data of 57 million customers and drivers from Uber Technologies Inc., a massive breach that the company concealed for more than a year. This week, the ride-hailing firm ousted its chief security officer and one of his deputies for their roles in keeping the hack under wraps, which included a $100,000 payment to the attackers.”
Image Credit: singpentinkhappy / Shutterstock.com Continue reading

Posted in Human Robots