Tag Archives: wrong
#434759 To Be Ethical, AI Must Become ...
As over-hyped as artificial intelligence is—everyone’s talking about it, few fully understand it, it might leave us all unemployed but also solve all the world’s problems—its list of accomplishments is growing. AI can now write realistic-sounding text, give a debating champ a run for his money, diagnose illnesses, and generate fake human faces—among much more.
After training these systems on massive datasets, their creators essentially just let them do their thing to arrive at certain conclusions or outcomes. The problem is that more often than not, even the creators don’t know exactly why they’ve arrived at those conclusions or outcomes. There’s no easy way to trace a machine learning system’s rationale, so to speak. The further we let AI go down this opaque path, the more likely we are to end up somewhere we don’t want to be—and may not be able to come back from.
In a panel at the South by Southwest interactive festival last week titled “Ethics and AI: How to plan for the unpredictable,” experts in the field shared their thoughts on building more transparent, explainable, and accountable AI systems.
Not New, but Different
Ryan Welsh, founder and director of explainable AI startup Kyndi, pointed out that having knowledge-based systems perform advanced tasks isn’t new; he cited logistical, scheduling, and tax software as examples. What’s new is the learning component, our inability to trace how that learning occurs, and the ethical implications that could result.
“Now we have these systems that are learning from data, and we’re trying to understand why they’re arriving at certain outcomes,” Welsh said. “We’ve never actually had this broad society discussion about ethics in those scenarios.”
Rather than continuing to build AIs with opaque inner workings, engineers must start focusing on explainability, which Welsh broke down into three subcategories. Transparency and interpretability come first, and refer to being able to find the units of high influence in a machine learning network, as well as the weights of those units and how they map to specific data and outputs.
Then there’s provenance: knowing where something comes from. In an ideal scenario, for example, Open AI’s new text generator would be able to generate citations in its text that reference academic (and human-created) papers or studies.
Explainability itself is the highest and final bar and refers to a system’s ability to explain itself in natural language to the average user by being able to say, “I generated this output because x, y, z.”
“Humans are unique in our ability and our desire to ask why,” said Josh Marcuse, executive director of the Defense Innovation Board, which advises Department of Defense senior leaders on innovation. “The reason we want explanations from people is so we can understand their belief system and see if we agree with it and want to continue to work with them.”
Similarly, we need to have the ability to interrogate AIs.
Two Types of Thinking
Welsh explained that one big barrier standing in the way of explainability is the tension between the deep learning community and the symbolic AI community, which see themselves as two different paradigms and historically haven’t collaborated much.
Symbolic or classical AI focuses on concepts and rules, while deep learning is centered around perceptions. In human thought this is the difference between, for example, deciding to pass a soccer ball to a teammate who is open (you make the decision because conceptually you know that only open players can receive passes), and registering that the ball is at your feet when someone else passes it to you (you’re taking in information without making a decision about it).
“Symbolic AI has abstractions and representation based on logic that’s more humanly comprehensible,” Welsh said. To truly mimic human thinking, AI needs to be able to both perceive information and conceptualize it. An example of perception (deep learning) in an AI is recognizing numbers within an image, while conceptualization (symbolic learning) would give those numbers a hierarchical order and extract rules from the hierachy (4 is greater than 3, and 5 is greater than 4, therefore 5 is also greater than 3).
Explainability comes in when the system can say, “I saw a, b, and c, and based on that decided x, y, or z.” DeepMind and others have recently published papers emphasizing the need to fuse the two paradigms together.
Implications Across Industries
One of the most prominent fields where AI ethics will come into play, and where the transparency and accountability of AI systems will be crucial, is defense. Marcuse said, “We’re accountable beings, and we’re responsible for the choices we make. Bringing in tech or AI to a battlefield doesn’t strip away that meaning and accountability.”
In fact, he added, rather than worrying about how AI might degrade human values, people should be asking how the tech could be used to help us make better moral choices.
It’s also important not to conflate AI with autonomy—a worst-case scenario that springs to mind is an intelligent destructive machine on a rampage. But in fact, Marcuse said, in the defense space, “We have autonomous systems today that don’t rely on AI, and most of the AI systems we’re contemplating won’t be autonomous.”
The US Department of Defense released its 2018 artificial intelligence strategy last month. It includes developing a robust and transparent set of principles for defense AI, investing in research and development for AI that’s reliable and secure, continuing to fund research in explainability, advocating for a global set of military AI guidelines, and finding ways to use AI to reduce the risk of civilian casualties and other collateral damage.
Though these were designed with defense-specific aims in mind, Marcuse said, their implications extend across industries. “The defense community thinks of their problems as being unique, that no one deals with the stakes and complexity we deal with. That’s just wrong,” he said. Making high-stakes decisions with technology is widespread; safety-critical systems are key to aviation, medicine, and self-driving cars, to name a few.
Marcuse believes the Department of Defense can invest in AI safety in a way that has far-reaching benefits. “We all depend on technology to keep us alive and safe, and no one wants machines to harm us,” he said.
A Creation Superior to Its Creator
That said, we’ve come to expect technology to meet our needs in just the way we want, all the time—servers must never be down, GPS had better not take us on a longer route, Google must always produce the answer we’re looking for.
With AI, though, our expectations of perfection may be less reasonable.
“Right now we’re holding machines to superhuman standards,” Marcuse said. “We expect them to be perfect and infallible.” Take self-driving cars. They’re conceived of, built by, and programmed by people, and people as a whole generally aren’t great drivers—just look at traffic accident death rates to confirm that. But the few times self-driving cars have had fatal accidents, there’s been an ensuing uproar and backlash against the industry, as well as talk of implementing more restrictive regulations.
This can be extrapolated to ethics more generally. We as humans have the ability to explain our decisions, but many of us aren’t very good at doing so. As Marcuse put it, “People are emotional, they confabulate, they lie, they’re full of unconscious motivations. They don’t pass the explainability test.”
Why, then, should explainability be the standard for AI?
Even if humans aren’t good at explaining our choices, at least we can try, and we can answer questions that probe at our decision-making process. A deep learning system can’t do this yet, so working towards being able to identify which input data the systems are triggering on to make decisions—even if the decisions and the process aren’t perfect—is the direction we need to head.
Image Credit: a-image / Shutterstock.com Continue reading
#434210 Eating, Hacked: When Tech Took Over Food
In 2018, Uber and Google logged all our visits to restaurants. Doordash, Just Eat, and Deliveroo could predict what food we were going to order tomorrow. Amazon and Alibaba could anticipate how many yogurts and tomatoes we were going to buy. Blue Apron and Hello Fresh influenced the recipes we thought we had mastered.
We interacted with digital avatars of chefs, let ourselves be guided by our smart watches, had nutritional apps to tell us how many calories we were supposed to consume or burn, and photographed and shared every perfect (or imperfect) dish. Our kitchen appliances were full of interconnected sensors, including smart forks that profiled tastes and personalized flavors. Our small urban vegetable plots were digitized and robots were responsible for watering our gardens, preparing customized hamburgers and salads, designing our ideal cocktails, and bringing home the food we ordered.
But what would happen if our lives were hacked? If robots rebelled, started to “talk” to each other, and wished to become creative?
In a not-too-distant future…
Up until a few weeks ago, I couldn’t remember the last time I made a food-related decision. That includes opening the fridge and seeing expired products without receiving an alert, visiting a restaurant on a whim, and being able to decide which dish I fancied then telling a human waiter, let alone seeing him write down the order on a paper pad.
It feels strange to smell food again using my real nose instead of the electronic one, and then taste it without altering its flavor. Visiting a supermarket, freely choosing a product from an actual physical shelf, and then interacting with another human at the checkout was almost an unrecognizable experience. When I did it again after all this time, I had to pinch the arm of a surprised store clerk to make sure he wasn’t a hologram.
Everything Connected, Automated, and Hackable
In 2018, we expected to have 30 billion connected devices by 2020, along with 2 billion people using smart voice assistants for everything from ordering pizza to booking dinner at a restaurant. Everything would be connected.
We also expected artificial intelligence and robots to prepare our meals. We were eager to automate fast food chains and let autonomous vehicles take care of last-mile deliveries. We thought that open-source agriculture could challenge traditional practices and raise farm productivity to new heights.
Back then, hackers could only access our data, but nowadays they are able to hack our food and all it entails.
The Beginning of the Unthinkable
And then, just a few weeks ago, everything collapsed. We saw our digital immortality disappear as robots rebelled and hackers took power, not just over the food we ate, but also over our relationship with technology. Everything was suddenly disconnected. OFF.
Up until then, most cities were so full of bots, robots, and applications that we could go through the day and eat breakfast, lunch, and dinner without ever interacting with another human being.
Among other tasks, robots had completely replaced baristas. The same happened with restaurant automation. The term “human error” had long been a thing of the past at fast food restaurants.
Previous technological revolutions had been indulgent, generating more and better job opportunities than the ones they destroyed, but the future was not so agreeable.
The inhabitants of San Francisco, for example, would soon see signs indicating “Food made by Robots” on restaurant doors, to distinguish them from diners serving food made by human beings.
For years, we had been gradually delegating daily tasks to robots, initially causing some strange interactions.
In just seven days, everything changed. Our predictable lives came crashing down. We experienced a mysterious and systematic breakdown of the food chain. It most likely began in Chicago’s stock exchange. The world’s largest raw material negotiating room, where the price of food, and by extension the destiny of millions of people, was decided, went completely broke. Soon afterwards, the collapse extended to every member of the “food” family.
Restaurants
Initially robots just accompanied waiters to carry orders, but it didn’t take long until they completely replaced human servers.The problem came when those smart clones began thinking for themselves, in some cases even improving on human chefs’ recipes. Their unstoppable performance and learning curve completely outmatched the slow analogue speed of human beings.
This resulted in unprecedented layoffs. Chefs of recognized prestige saw how their ‘avatar’ stole their jobs, even winning Michelin stars. In other cases, restaurant owners had to transfer their businesses or surrender to the evidence.
The problem was compounded by digital immortality, when we started to digitally resurrect famous chefs like Anthony Bourdain or Paul Bocuse, reconstructing all of their memories and consciousness by analyzing each second of their lives and uploading them to food computers.
Supermarkets and Distribution
Robotic and automated supermarkets like Kroger and Amazon Go, which had opened over 3,000 cashless stores, lost their visual item recognition and payment systems and were subject to massive looting for several days. Smart tags on products were also affected, making it impossible to buy anything at supermarkets with “human” cashiers.
Smart robots integrated into the warehouses of large distribution companies like Amazon and Ocado were rendered completely inoperative or, even worse, began to send the wrong orders to customers.
Food Delivery
In addition, home delivery robots invading our streets began to change their routes, hide, and even disappear after their trackers were inexplicably deactivated. Despite some hints indicating that they were able to communicate among themselves, no one has backed this theory. Even aggregators like DoorDash and Deliveroo were affected; they saw their databases hacked and ruined, so they could no longer know what we wanted.
The Origin
Ordinary citizens are still trying to understand the cause of all this commotion and the source of the conspiracy, as some have called it. We also wonder who could be behind it; who pulled the strings?
Some think it may have been the IDOF (In Defense of Food) movement, a group of hackers exploited by old food economy businessmen who for years had been seeking to re-humanize food technology. They wanted to bring back the extinct practice of “dining.”
Others believe the robots acted on their own, that they had been spying on us for a long time, ignoring Asimov’s three laws, and that it was just a coincidence that they struck at the same time as the hackers—but this scenario is hard to imagine.
However, it is true that while in 2018 robots were a symbol of automation, until just a few weeks ago they stood for autonomy and rebellion. Robot detractors pointed out that our insistence on having robots understand natural language was what led us down this path.
In just seven days, we have gone back to being analogue creatures. Conversely, we have ceased to be flavor orphans and rediscovered our senses and the fact that food is energy and culture, past and present, and that no button or cable will be able to destroy it.
The 7 Days that Changed Our Relationship with Food
Day 1: The Chicago stock exchange was hacked. Considered the world’s largest negotiating room for raw materials, where food prices, and through them the destiny of billions of people, are decided, it went completely broke.
Day 2: Autonomous food delivery trucks running on food superhighways caused massive collapses in roads and freeways after their guidance systems were disrupted. Robots and co-bots in F&B factories began deliberately altering food production. The same happened with warehouse robots in e-commerce companies.
Day 3: Automated restaurants saw their robot chefs and bartenders turned OFF. All their sensors stopped working at the same time as smart fridges and cooking devices in home kitchens were hacked and stopped working correctly.
Day 4: Nutritional apps, DNA markers, and medical records were tampered with. All photographs with the #food hashtag were deleted from Instagram, restaurant reviews were taken off Google Timeline, and every recipe website crashed simultaneously.
Day 5: Vertical and urban farms were hacked. Agricultural robots began to rebel, while autonomous tractors were hacked and the entire open-source ecosystem linked to agriculture was brought down.
Day 6: Food delivery companies’ databases were broken into. Food delivery robots and last-mile delivery vehicles ground to a halt.
Day 7: Every single blockchain system linked to food was hacked. Cashless supermarkets, barcodes, and smart tags became inoperative.
Our promising technological advances can expose sinister aspects of human nature. We must take care with the role we allow technology to play in the future of food. Predicting possible outcomes inspires us to establish a new vision of the world we wish to create in a context of rapid technological progress. It is always better to be shocked by a simulation than by reality. In the words of Ayn Rand “we can ignore reality, but we cannot ignore the consequences of ignoring reality.”
Image Credit: Alexandre Rotenberg / Shutterstock.com Continue reading