Tag Archives: Would

#439055 Stretch Is Boston Dynamics’ Take on a ...

Today, Boston Dynamics is announcing Stretch, a mobile robot designed to autonomously move boxes around warehouses. At first glance, you might be wondering why the heck this is a Boston Dynamics robot at all, since the dynamic mobility that we associate with most of their platforms is notably absent. The combination of strength and speed in Stretch’s arm is something we haven’t seen before in a mobile robot, and it’s what makes this a unique and potentially exciting entry into the warehouse robotics space.

Useful mobile manipulation in any environment that’s not almost entirely structured is still a significant challenge in robotics, and it requires a very difficult combination of sensing, intelligence, and dynamic motion, all of which are classic Boston Dynamics. But also classic Boston Dynamics is building really cool platforms, and only later trying to figure out a way of making them commercially viable. So why Stretch, why boxes, why now, and (the real question) why not Handle? We talk with Boston Dynamics’ Vice President of Product Engineering Kevin Blankespoor to find out.

Stretch is very explicitly a box-handling mobile robot for relatively well structured warehouses. It’s in no way designed to be a generalist that many of Boston Dynamics’ other robots are. And to be fair, this is absolutely how to make a robot that’s practical and cost effective right out of the crate: Identify a task that is dull or dirty or dangerous for humans, design a robot to do that task safely and efficiently, and deploy it with the expectation that it’ll be really good at that task but not necessarily much else. This is a very different approach than a robot like Spot, where the platform came first and the practical applications came later—with Stretch, it’s all about that specific task in a specific environment.

There are already robotic solutions for truck unloading, palletizing, and depalletizing, but Stretch seems to be uniquely capable. For truck unloading, the highest performance systems that I’m aware of are monstrous things (here’s one example from Honeywell) that use a ton of custom hardware to just sort of ingest the cargo within a trailer all at once. In a highly structured and predictable warehouse, this sort of thing may pay off over the long term, but it’s going to be extremely expensive and not very versatile at all.

Palletizing and depalletizing robots are much more common in warehouses today. They’re almost always large industrial arms surrounded by a network of custom conveyor belts and whatnot, suffering from the same sorts of constraints as a truck unloader— very capable in some situations, but generally high cost and low flexibility.

Photo: Boston Dynamics

Stretch is probably not going to be able to compete with either of these types of dedicated systems when it comes to sheer speed, but it offers lots of other critical advantages: It’s fast and easy to deploy, easy to use, and adaptable to a variety of different tasks without costly infrastructure changes. It’s also very much not Handle, which was Boston Dynamics’ earlier (although not that much earlier) attempt at a box-handling robot for warehouses, and (let’s be honest here) a much more Boston Dynamics-y thing than Stretch seems to be. To learn more about why the answer is Stretch rather than Handle, and how Stretch will fit into the warehouse of the very near future, we spoke with Kevin Blankespoor, Boston Dynamics’ VP of Product Engineering and chief engineer for both Handle and Stretch.

IEEE Spectrum: Tell me about Stretch!

Kevin Blankespoor: Stretch is the first mobile robot that we’ve designed specifically for the warehouse. It’s all about moving boxes. Stretch is a flexible robot that can move throughout the warehouse and do different tasks. During a typical day in the life of Stretch in the future, it might spend the morning on the inbound side of the warehouse unloading boxes from trucks. It might spend the afternoon in the aisles of the warehouse building up pallets to go to retailers and e-commerce facilities, and it might spend the evening on the outbound side of the warehouse loading boxes into the trucks. So, it really goes to where the work is.

There are already other robots that include truck unloading robots, palletizing and depalletizing robots, and mobile bases with arms on them. What makes Boston Dynamics the right company to introduce a new robot in this space?

We definitely thought through this, because there are already autonomous mobile robots [AMRs] out there. Most of them, though, are more like pallet movers or tote movers—they don't have an arm, and most of them are really just about moving something from point A to point B without manipulation capability. We've seen some experiments where people put arms on AMRs, but nothing that's made it very far in the market. And so when we started looking at Stretch, we realized we really needed to make a custom robot, and that it was something we could do quickly.

“We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.”

Stretch is built with pieces from Spot and Atlas and that gave us a big head start. For example, if you look at Stretch’s vision system, it's 2D cameras, depth sensors, and software that allows it to do obstacle detection, box detection, and localization. Those are all the same sensors and software that we've been using for years on our legged robots. And if you look closely at Stretch’s wrist joints, they're actually the same as Spot’s hips. They use the same electric motors, the same gearboxes, the same sensors, and they even have the same closed-loop controller controlling the joints.

If you were to buy an existing industrial robot arm with this kind of performance, it would be about four times heavier than the arm we built, and it's really hard to make that into a mobile robot. A lot of this came from our leg technology because it’s so important for our leg designs to be lightweight for the robots to balance. We took that same strength to weight advantage that we have, and built it into this arm. We're able to rapidly piece together things from our other robots to get us out of the gate quickly, so even though this looks like a totally different robot, we think we have a good head start going into this market.

At what point did you decide to go with an arm on a statically stable base on Stretch, rather than something more, you know, dynamic-y?

Stretch looks really different than the robots that Boston Dynamics has done in the past. But you'd be surprised how much similarity there is between our legged robots and Stretch under the hood. Looking back, we actually got our start on moving boxes with Atlas, and at that point it was just research and development. We were really trying to do force control for box grasping. We were picking up heavy boxes and maintaining balance and working on those fundamentals. We released a video of that as our first next-gen Atlas video, and it was interesting. We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.

So at this point we actually came up with Handle. The intent of Handle was to do a couple things—one was, we thought we could build a simpler robot that had Atlas’ attributes. Handle has a small footprint so it can fit in tight spaces, but it can pick up heavy boxes. And in addition to that, we had always really wanted to combine wheels and legs. We’d been talking about doing that for a decade and so Handle was a chance for us to try it.

We built a couple versions of Handle, and the first one was really just a prototype to kind of explore the morphology. But the second one was more purpose-built for warehouse tasks, and we started building pallets with that one and it looked pretty good. And then we started doing truck unloading with Handle, which was the pivotal moment. Handle could do it, but it took too long. Every time Handle grasped a box, it would have to roll back and then get to a place where it could spin itself to face forward and place the box, and trucks are very tight for a robot this size, so there's not a lot of room to maneuver. We knew the whole time that there was a robot like Stretch that was another alternative, but that's really when it became clear that Stretch would have a lot of advantages, and we started working on it about a year ago.

Stretch is certainly impressive in a practical way, but I’ll admit to really hoping that something like Handle could have turned out to be a viable warehouse robot.

I love the Handle project as well, and I’m very passionate about that robot. And there was a stage before we built Stretch where we thought, “this would be pretty standard looking compared to Handle, is it going to capture enough of the Boston Dynamics secret sauce?” But when you actually dissect all the problems within Stretch that you have to tackle, there are a lot of cool robotics problems left in there—the vision system, the planning, the manipulation, the grasping of the boxes—it's a lot harder to solve than it looks, and we're excited that we're actually getting fairly far down that road now.

What happens to Handle now?

Stretch has really taken over our team as far as warehouse products go. Handle we still use occasionally as a research robot, but it’s not actively under development. Stretch is really Handle’s descendent. Handle’s not retired, exactly, but we’re just using it for things like the dance video.

There’s still potential to do cool stuff with Handle. I do think that combining wheels with legs is very cool, and largely unexplored compared to its potential. So I still think that you're gonna see versions of robots combining wheels and legs like Handle, and maybe a version of Handle in the future that does more of that. But because we're switching this thread from research into product, Stretch is really the main focus now.

How autonomous is Stretch?

Stretch is semi-autonomous, and that means it really needs to work with people to tap into its full potential. With truck unloading, for example, a person will drive Stretch into the back of the truck and then basically point Stretch in the right direction and say go. And from that point on, everything’s autonomous. Stretch has its vision system and its mobility and it can detect all the boxes, grasp all boxes, and move them onto a conveyor all autonomously. This is something that takes people hours to do manually, and Stretch can go all the way until it gets to the last box, and the truck is empty. There are some parts of the truck unloading task that do require people, like verifying that the truck is in the right place and opening the doors. But this takes a person just a few minutes, and then the robot can spend hours or as long as it takes to do its job autonomously.

There are also other tasks in the warehouse where the autonomy will increase in the future. After truck unloading, the second thing we’ll take on is order building, which will be more in the aisles of a warehouse. For that, Stretch will be navigating around the warehouse, finding the right pallet it needs to take a box from, and loading it onto a new pallet. This will be a different model with more autonomy; you’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.

What kinds of constraints is Stretch operating under? Do the boxes all have to be stacked neatly in the back of the truck, do they have to be the same size, the same color, etc?

“This will be a different model with more autonomy. You’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.”

If you think about manufacturing, where there's been automation for decades, you can go into a modern manufacturing facility and there are robot arms and conveyors and other machines. But if you look at the actual warehouse space, 90+ percent is manually operated, and that's because of what you just asked about— things that are less structured, where there’s more variety, and it's more challenging for a robot. But this is starting to change. This is really, really early days, and you’re going to be seeing a lot more robots in the warehouse space.

The warehouse robotics industry is going to grow a lot over the next decade, and a lot of that boils down to vision—the ability for robots to navigate and to understand what they’re seeing. Actually seeing boxes in real world scenarios is challenging, especially when there's a lot of variety. We've been testing our machine learning-based box detection system on Pick for a few years now, and it's gotten far enough that we know it’s one of the technical hurdles you need to overcome to succeed in the warehouse.

Can you compare the performance of Stretch to the performance of a human in a box-unloading task?

Stretch can move cases up to 50 pounds which is the OSHA limit for how much a single person's allowed to move. The peak case rate for Stretch is 800 cases per hour. You really need to keep up with the flow of goods throughout the warehouse, and 800 cases per hour should be enough for most applications. This is similar to a really good human; most humans are probably slower, and it’s hard for a human to sustain that rate, and one of the big issues with people doing this jobs is injury rates. Imagine moving really heavy boxes all day, and having to reach up high or bend down to get them—injuries are really common in this area. Truck unloading is one of the hardest jobs in a warehouse, and that’s one of the reasons we’re starting there with Stretch.

Is Stretch safe for humans to be around?

We looked at using collaborative robot arms for Stretch, but they don’t have the combination of strength and speed and reach to do this task. That’s partially just due to the laws of physics—if you want to move a 50lb box really fast, that’s a lot of energy there. So, Stretch does need to maintain separation from humans, but it’s pretty safe when it’s operating in the back of a truck.

In the middle of a warehouse, Stretch will have a couple different modes. When it's traveling around it'll be kind of like an AMR, and use a safety-rated lidar making sure that it slows down or stops as people get closer. If it's parked and the arm is moving, it'll do the same thing, monitoring anyone getting close and either slow down or stop.

How do you see Stretch interacting with other warehouse robots?

For building pallet orders, we can do that in a couple of different ways, and we’re experimenting with partners in the AMR space. So you might have an AMR that moves the pallet around and then rendezvous with Stretch, and Stretch does the manipulation part and moves boxes onto the pallet, and then the AMR scuttles off to the next rendezvous point where maybe a different Stretch meets it. We’re developing prototypes of that behavior now with a few partners. Another way to do it is Stretch can actually pull the pallet around itself and do both tasks. There are two fundamental things that happen in the warehouse: there's movement of goods, and there's manipulation of goods, and Stretch can do both.

You’re aware that Hello Robot has a mobile manipulator called Stretch, right?

Great minds think alike! We know Aaron [Edsinger] from the Google days; we all used to be in the same company, and he’s a great guy. We’re in very different applications and spaces, though— Aaron’s robot is going into research and maybe a little bit into the consumer space, while this robot is on a much bigger scale aimed at industrial applications, so I think there’s actually a lot of space between our robots, in terms of how they’ll be used.

Editor’s Note: We did check in with Aaron Edsinger at Hello Robot, and he sees things a little bit differently. “We're disappointed they chose our name for their robot,” Edsinger told us. “We're seriously concerned about it and considering our options.” We sincerely hope that Boston Dynamics and Hello Robot can come to an amicable solution on this.
What’s the timeline for commercial deployment of Stretch?

This is a prototype of the Stretch robot, and anytime we design a new robot, we always like to build a prototype as quickly as possible so we can figure out what works and what doesn't work. We did that with our bipeds and quadrupeds as well. So, we get an early look at what we need to iterate, because any time you build the first thing, it's not the right thing, and you always need to make changes to get to the final version. We've got about six of those Stretch prototypes operating now. In parallel, our hardware team is finishing up the design of the productized version of Stretch. That version of Stretch looks a lot like the prototype, but every component has been redesigned from the ground up to be manufacturable, to be reliable, and to be higher performance.

For the productized version of Stretch, we’ll build up the first units this summer, and then it’ll go on sale next year. So this is kind of a sneak peak into what the final product will be.

How much does it cost, and will you be selling Stretch, or offering it as a service?

We’re not quite ready to talk about cost yet, but it’ll be cost effective, and similar in cost to existing systems if you were to combine an industrial robot arm, custom gripper, and mobile base. We’re considering both selling and leasing as a service, but we’re not quite ready to narrow it down yet.

Photo: Boston Dynamics

As with all mobile manipulators, what Stretch can do long-term is constrained far more by software than by hardware. With a fast and powerful arm, a mobile base, a solid perception system, and 16 hours of battery life, you can imagine how different grippers could enable all kinds of different capabilities. But we’re getting ahead of ourselves, because it’s a long, long way from getting a prototype to work pretty well to getting robots into warehouses in a way that’s commercially viable long-term, even when the use case is as clear as it seems to be for Stretch.

Stretch also could signal a significant shift in focus for Boston Dynamics. While Blankespoor’s comments about Stretch leveraging Boston Dynamics’ expertise with robots like Spot and Atlas are well taken, Stretch is arguably the most traditional robot that the company has designed, and they’ve done so specifically to be able to sell robots into industry. This is what you do if you’re a robotics company who wants to make money by selling robots commercially, which (historically) has not been what Boston Dynamics is all about. Despite its bonkers valuation, Boston Dynamics ultimately needs to make money, and robots like Stretch are a good way to do it. With that in mind, I wouldn’t be surprised to see more robots like this from Boston Dynamics—robots that leverage the company’s unique technology, but that are designed to do commercially useful tasks in a somewhat less flashy way. And if this strategy keeps Boston Dynamics around (while funding some occasional creative craziness), then I’m all for it. Continue reading

Posted in Human Robots

#439032 To Learn To Deal With Uncertainty, This ...

AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.

But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.

“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”

His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.

“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.

In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.

Gif: MIT Aerospace Controls Laboratory

In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).

Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.

But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.

This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.

“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading

Posted in Human Robots

#439023 In ‘Klara and the Sun,’ We Glimpse ...

In a store in the center of an unnamed city, humanoid robots are displayed alongside housewares and magazines. They watch the fast-moving world outside the window, anxiously awaiting the arrival of customers who might buy them and take them home. Among them is Klara, a particularly astute robot who loves the sun and wants to learn as much as possible about humans and the world they live in.

So begins Kazuo Ishiguro’s new novel Klara and the Sun, published earlier this month. The book, told from Klara’s perspective, portrays an eerie future society in which intelligent machines and other advanced technologies have been integrated into daily life, but not everyone is happy about it.

Technological unemployment, the progress of artificial intelligence, inequality, the safety and ethics of gene editing, increasing loneliness and isolation—all of which we’re grappling with today—show up in Ishiguro’s world. It’s like he hit a fast-forward button, mirroring back to us how things might play out if we don’t approach these technologies with caution and foresight.

The wealthy genetically edit or “lift” their children to set them up for success, while the poor have to make do with the regular old brains and bodies bequeathed them by evolution. Lifted and unlifted kids generally don’t mix, and this is just one of many sinister delineations between a new breed of haves and have-nots.

There’s anger about robots’ steady infiltration into everyday life, and questions about how similar their rights should be to those of humans. “First they take the jobs. Then they take the seats at the theater?” one woman fumes.

References to “changes” and “substitutions” allude to an economy where automation has eliminated millions of jobs. While “post-employed” people squat in abandoned buildings and fringe communities arm themselves in preparation for conflict, those whose livelihoods haven’t been destroyed can afford to have live-in housekeepers and buy Artificial Friends (or AFs) for their lonely children.

“The old traditional model that we still live with now—where most of us can get some kind of paid work in exchange for our services or the goods we make—has broken down,” Ishiguro said in a podcast discussion of the novel. “We’re not talking just about the difference between rich and poor getting bigger. We’re talking about a gap appearing between people who participate in society in an obvious way and people who do not.”

He has a point; as much as techno-optimists claim that the economic changes brought by automation and AI will give us all more free time, let us work less, and devote time to our passion projects, how would that actually play out? What would millions of “post-employed” people receiving basic income actually do with their time and energy?

In the novel, we don’t get much of a glimpse of this side of the equation, but we do see how the wealthy live. After a long wait, just as the store manager seems ready to give up on selling her, Klara is chosen by a 14-year-old girl named Josie, the daughter of a woman who wears “high-rank clothes” and lives in a large, sunny home outside the city. Cheerful and kind, Josie suffers from an unspecified illness that periodically flares up and leaves her confined to her bed for days at a time.

Her life seems somewhat bleak, the need for an AF clear. In this future world, the children of the wealthy no longer go to school together, instead studying alone at home on their digital devices. “Interaction meetings” are set up for them to learn to socialize, their parents carefully eavesdropping from the next room and trying not to intervene when there’s conflict or hurt feelings.

Klara does her best to be a friend, aide, and confidante to Josie while continuing to learn about the world around her and decode the mysteries of human behavior. We surmise that she was programmed with a basic ability to understand emotions, which evolves along with her other types of intelligence. “I believe I have many feelings. The more I observe, the more feelings become available to me,” she explains to one character.

Ishiguro does an excellent job of representing Klara’s mind: a blend of pre-determined programming, observation, and continuous learning. Her narration has qualities both robotic and human; we can tell when something has been programmed in—she “Gives Privacy” to the humans around her when that’s appropriate, for example—and when she’s figured something out for herself.

But the author maintains some mystery around Klara’s inner emotional life. “Does she actually understand human emotions, or is she just observing human emotions and simulating them within herself?” he said. “I suppose the question comes back to, what are our emotions as human beings? What do they amount to?”

Klara is particularly attuned to human loneliness, since she essentially was made to help prevent it. It is, in her view, peoples’ biggest fear, and something they’ll go to great lengths to avoid, yet can never fully escape. “Perhaps all humans are lonely,” she says.

Warding off loneliness through technology isn’t a futuristic idea, it’s something we’ve been doing for a long time, with the technologies at hand growing more and more sophisticated. Products like AFs already exist. There’s XiaoIce, a chatbot that uses “sentiment analysis” to keep its 660 million users engaged, and Azuma Hikari, a character-based AI designed to “bring comfort” to users whose lives lack emotional connection with other humans.

The mere existence of these tools would be sinister if it wasn’t for their widespread adoption; when millions of people use AIs to fill a void in their lives, it raises deeper questions about our ability to connect with each other and whether technology is building it up or tearing it down.

This isn’t the only big question the novel tackles. An overarching theme is one we’ve been increasingly contemplating as computers start to acquire more complex capabilities, like the beginnings of creativity or emotional awareness: What is it that truly makes us human?

“Do you believe in the human heart?” one character asks. “I don’t mean simply the organ, obviously. I’m speaking in the poetic sense. The human heart. Do you think there is such a thing? Something that makes each of us special and individual?”

The alternative, at least in the story, is that people don’t have a unique essence, but rather we’re all a blend of traits and personalities that can be reduced to strings of code. Our understanding of the brain is still elementary, but at some level, doesn’t all human experience boil down to the firing of billions of neurons between our ears? Will we one day—in a future beyond that painted by Ishiguro, but certainly foreshadowed by it—be able to “decode” our humanity to the point that there’s nothing mysterious left about it? “A human heart is bound to be complex,” Klara says. “But it must be limited.”

Whether or not you agree, Klara and the Sun is worth the read. It’s both a marvelous, engaging story about what it means to love and be human, and a prescient warning to approach technological change with caution and nuance. We’re already living in a world where AI keeps us company, influences our behavior, and is wreaking various forms of havoc. Ishiguro’s novel is a snapshot of one of our possible futures, told through the eyes of a robot who keeps you rooting for her to the end.

Image Credit: Marion Wellmann from Pixabay Continue reading

Posted in Human Robots

#439012 Video Friday: Man-Machine Synergy ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Man-Machine Synergy Effectors, Inc. is a Japanese company working on an absolutely massive “human machine synergistic effect device,” which is a huge robot controlled by a nearby human using a haptic rig.

From the look of things, the next generation will be able to move around. Whoa.

[ MMSE ]

This method of loading and unloading AMRs without having them ever stop moving is so obvious that there must be some equally obvious reason why I've never seen it done in practice.

The LoadRunner is able to transport and sort parcels weighing up to 30 kilograms. This makes it the perfect luggage carrier for airports. These AI-driven go-carts can also work in concert as larger collectives to carry large, heavy and bulky objects. Every LoadRunner can also haul up to four passive trailers. Powered by four electric motors, the LoadRunner sharply brakes at just the right moment right in front of its destination and the payload slides from the robot onto the delivery platform.

[ Fraunhofer ] via [ Gizmodo ]

Ayato Kanada at Kyushu University wrote in to share this clever “dislocatable joint,” a way of combining continuum and rigid robots.

[ Paper ]

Thanks Ayato!

The DodgeDrone challenge revisits the popular dodgeball game in the context of autonomous drones. Specifically, participants will have to code navigation policies to fly drones between waypoints while avoiding dynamic obstacles. Drones are fast but fragile systems: as soon as something hits them, they will crash! Since objects will move towards the drone with different speeds and acceleration, smart algorithms are required to avoid them!

This could totally happen in real life, and we need to be prepared for it!

[ DodgeDrone Challenge ]

In addition to winning the Best Student Design Competition CREATIVITY Award at HRI 2021, this paper would also have won the Best Paper Title award, if that award existed.

[ Paper ]

Robots are traditionally bound by a fixed morphology during their operational lifetime, which is limited to adapting only their control strategies. Here we present the first quadrupedal robot that can morphologically adapt to different environmental conditions in outdoor, unstructured environments.

We show that the robot exploits its training to effectively transition between different morphological configurations, exhibiting substantial performance improvements over a non-adaptive approach. The demonstrated benefits of real-world morphological adaptation demonstrate the potential for a new embodied way of incorporating adaptation into future robotic designs.

[ Nature ]

A drone video shot in a Minneapolis bowling alley was hailed as an instant classic. One Hollywood veteran said it “adds to the language and vocabulary of cinema.” One IEEE Spectrum editor said “hey that's pretty cool.”

[ Bryant Lake Bowl ]

It doesn't take a robot to convince me to buy candy, but I think if I buy candy from Relay it's a business expense, right?

[ RIS ]

DARPA is making progress on its AI dogfighting program, with physical flight tests expected this year.

[ DARPA ACE ]

Unitree Robotics has realized that the Empire needs to be overthrown!

[ Unitree ]

Windhover Labs, an emerging leader in open and reliable flight software and hardware, announces the upcoming availability of its first hardware product, a low cost modular flight computer for commercial drones and small satellites.

[ Windhover ]

As robots and autonomous systems are poised to become part of our everyday lives, the University of Michigan and Ford are opening a one-of-a-kind facility where they’ll develop robots and roboticists that help make lives better, keep people safer and build a more equitable society.

[ U Michigan ]

The adaptive robot Rizon combined with a new hybrid electrostatic and gecko-inspired gripping pad developed by Stanford BDML can manipulate bulky, non-smooth items in the most effort-saving way, which broadens the applications in retail and household environments.

[ Flexiv ]

Thanks Yunfan!

I don't know why anyone would want things to get MORE icy, but if you do for some reason, you can make it happen with a Husky.

Is winter over yet?

[ Clearpath ]

Skip ahead to about 1:20 to see a pair of Gita robots following a Spot following a human like a chain of lil’ robot duckings.

[ PFF ]

Here are a couple of retro robotics videos, one showing teleoperated humanoids from 2000, and the other showing a robotic guide dog from 1976 (!)

[ Tachi Lab ]

Thanks Fan!

If you missed Chad Jenkins' talk “That Ain’t Right: AI Mistakes and Black Lives” last time, here's another opportunity to watch from Robotics Today, and it includes a top notch panel discussion at the end.

[ Robotics Today ]

Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over numerous R&D programs that I have led at NREC in the past 25 years.

[ CMU ] Continue reading

Posted in Human Robots

#439004 Video Friday: A Walking, Wheeling ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

This is a pretty terrible video, I think because it was harvested from WeChat, which is where Tencent decided to premiere its new quadruped robot.

Not bad, right? Its name is Max, it has a top speed of 25 kph thanks to its elbow wheels, and we know almost nothing else about it.

[ Tencent ]

Thanks Fan!

Can't bring yourself to mask-shame others? Build a robot to do it for you instead!

[ GitHub ]

Researchers at Georgia Tech have recently developed an entirely soft, long-stroke electromagnetic actuator using liquid metal, compliant magnetic composites, and silicone polymers. The robot was inspired by the motion of the Xenia coral, which pulses its polyps to circulate oxygen under water to promote photosynthesis.

In this work, power applied to soft coils generates an electromagnetic field, which causes the internal compliant magnet to move upward. This forces the squishy silicone linkages to convert linear to the rotational motion with an arclength of up to 42 mm with a bandwidth up to 30 Hz. This highly deformable, fast, and long-stroke actuator topology can be utilized for a variety of applications from biomimicry to fully-soft grasping to wearables applications.

[ Paper ] via [ Georgia Tech ]

Thanks Noah!

Jueying Mini Lite may look a little like a Boston Dynamics Spot, but according to DeepRobotics, its coloring is based on Bruce Lee's Kung Fu clothes.

[ DeepRobotics ]

Henrique writes, “I would like to share with you the supplementary video of our recent work accepted to ICRA 2021. The video features a quadruped and a full-size humanoid performing dynamic jumps, after a brief animated intro of what direct transcription is. Me and my colleagues have put a lot of hard work into this, and I am very proud of the results.”

Making big robots jump is definitely something to be proud of!

[ SLMC Edinburgh ]

Thanks Henrique!

The finals of the Powered Exoskeleton Race for Cybathlon Global 2020.

[ Cybathlon ]

Thanks Fan!

It's nice that every once in a while, the world can get excited about science and robots.

[ NASA ]

Playing the Imperial March over footage of an army of black quadrupeds may not be sending quite the right message.

[ Unitree ]

Kod*lab PhD students Abriana Stewart-Height, Diego Caporale and Wei-Hsi Chen, with former Kod*lab student Garrett Wenger were on set in the summer of 2019 to operate RHex for the filming of Lapsis, a first feature film by director and screenwriter Noah Hutton.

[ Kod*lab ]

In class 2.008, Design and Manufacturing II, mechanical engineering students at MIT learn the fundamental principles of manufacturing at scale by designing and producing their own yo-yos. Instructors stress the importance of sustainable practices in the global supply chain.

[ MIT ]

A short history of robotics, from ABB.

[ ABB ]

In this paper, we propose a whole-body planning framework that unifies dynamic locomotion and manipulation tasks by formulating a single multi-contact optimal control problem. This is demonstrated in a set of real hardware experiments done in free-motion, such as base or end-effector pose tracking, and while pushing/pulling a heavy resistive door. Robustness against model mismatches and external disturbances is also verified during these test cases.

[ Paper ]

This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking.

Extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.

[ MIT ]

With our SaaS solution, we enable robots to inspect industrial facilities. One of the robots our software supports, is the Boston Dynamics Spot robot. In this video we demonstrate how autonomous industrial inspection with the Boston Dynamics Spot Robot is performed with our teach and repeat solution.

[ Energy Robotics ]

In this week’s episode of Tech on Deck, learn about our first technology demonstration sent to Station: The Robotic Refueling Mission. This tech demo helped us develop the tools and techniques needed to robotically refuel a satellite in space, an important capability for space exploration.

[ NASA ]

At Covariant we are committed to research and development that will bring AI Robotics to the real world. As a part of this, we believe it's important to educate individuals on how these exciting innovations will make a positive, fundamental and global impact for years to come. In this presentation, our co-founder Pieter Abbeel breaks down his thoughts on the current state of play for AI robotics.

[ Covariant ]

How do you fly a helicopter on Mars? It takes Ingenuity and Perseverance. During this technology demo, Farah Alibay and Tim Canham will get into the details of how these craft will manage this incredible task.

[ NASA ]

Complex real-world environments continue to present significant challenges for fielding robotic teams, which often face expansive spatial scales, difficult and dynamic terrain, degraded environmental conditions, and severe communication constraints. Breakthrough technologies call for integrated solutions across autonomy, perception, networking, mobility, and human teaming thrusts. As such, the DARPA OFFSET program and the DARPA Subterranean Challenge seek novel approaches and new insights for discovering and demonstrating these innovative technologies, to help close critical gaps for robotic operations in complex urban and underground environments.

[ UPenn ] Continue reading

Posted in Human Robots