Tag Archives: with

#439051 ‘Neutrobots’ smuggle drugs ...

A team of researchers from the Harbin Institute of Technology along with partners at the First Affiliated Hospital of Harbin Medical University, both in China, has developed a tiny robot that can ferry cancer drugs through the blood-brain barrier (BBB) without setting off an immune reaction. In their paper published in the journal Science Robotics, the group describes their robot and tests with mice. Junsun Hwang and Hongsoo Choi, with the Daegu Gyeongbuk Institute of Science and Technology in Korea, have published a Focus piece in the same journal issue on the work done by the team in China. Continue reading

Posted in Human Robots

#439048 ThermoBots: Microrobots on the water

This research project was originated from the collaboration between two institutions with their respective expertise: The TIPs laboratory of the ULB, in Belgium, which is a group dedicated to the study of transport phenomena and fluid interfaces, and the AS2M department of the FEMTO-ST institute, in France, specialized in microrobotics. And thus, ThermoBot was born, a new kind of manipulation platform working on the air-water interface. ThermoBot uses an original actuation mechanism, an infrared laser that locally heats the air-water interface, triggering so-called thermocapillary flows. Combining our specialties in interfacial phenomena and robotics, we were able to use this flow to displace floating components in a controlled manner. Continue reading

Posted in Human Robots

#439042 How Scientists Used Ultrasound to Read ...

Thanks to neural implants, mind reading is no longer science fiction.

As I’m writing this sentence, a tiny chip with arrays of electrodes could sit on my brain, listening in on the crackling of my neurons firing as my hands dance across the keyboard. Sophisticated algorithms could then decode these electrical signals in real time. My brain’s inner language to plan and move my fingers could then be used to guide a robotic hand to do the same. Mind-to-machine control, voilà!

Yet as the name implies, even the most advanced neural implant has a problem: it’s an implant. For electrodes to reliably read the brain’s electrical chatter, they need to pierce through the its protective membrane and into brain tissue. Danger of infection aside, over time, damage accumulates around the electrodes, distorting their signals or even rendering them unusable.

Now, researchers from Caltech have paved a way to read the brain without any physical contact. Key to their device is a relatively new superstar in neuroscience: functional ultrasound, which uses sound waves to capture activity in the brain.

In monkeys, the technology could reliably predict their eye movement and hand gestures after just a single trial—without the usual lengthy training process needed to decode a movement. If adopted by humans, the new mind-reading tech represents a triple triumph: it requires minimal surgery and minimal learning, but yields maximal resolution for brain decoding. For people who are paralyzed, it could be a paradigm shift in how they control their prosthetics.

“We pushed the limits of ultrasound neuroimaging and were thrilled that it could predict movement,” said study author Dr. Sumner Norman.

To Dr. Krishna Shenoy at Stanford, who was not involved, the study will finally put ultrasound “on the map as a brain-machine interface technique. Adding to this toolkit is spectacular,” he said.

Breaking the Sound Barrier
Using sound to decode brain activity might seem preposterous, but ultrasound has had quite the run in medicine. You’ve probably heard of its most common use: taking photos of a fetus in pregnancy. The technique uses a transducer, which emits ultrasound pulses into the body and finds boundaries in tissue structure by analyzing the sound waves that bounce back.

Roughly a decade ago, neuroscientists realized they could adapt the tech for brain scanning. Rather than directly measuring the brain’s electrical chatter, it looks at a proxy—blood flow. When certain brain regions or circuits are active, the brain requires much more energy, which is provided by increased blood flow. In this way, functional ultrasound works similarly to functional MRI, but at a far higher resolution—roughly ten times, the authors said. Plus, people don’t have to lie very still in an expensive, claustrophobic magnet.

“A key question in this work was: If we have a technique like functional ultrasound that gives us high-resolution images of the brain’s blood flow dynamics in space and over time, is there enough information from that imaging to decode something useful about behavior?” said study author Dr. Mikhail Shapiro.

There’s plenty of reasons for doubt. As the new kid on the block, functional ultrasound has some known drawbacks. A major one: it gives a far less direct signal than electrodes. Previous studies show that, with multiple measurements, it can provide a rough picture of brain activity. But is that enough detail to guide a robotic prosthesis?

One-Trial Wonder
The new study put functional ultrasound to the ultimate test: could it reliably detect movement intention in monkeys? Because their brains are the most similar to ours, rhesus macaque monkeys are often the critical step before a brain-machine interface technology is adapted for humans.

The team first inserted small ultrasound transducers into the skulls of two rhesus monkeys. While it sounds intense, the surgery doesn’t penetrate the brain or its protective membrane; it’s only on the skull. Compared to electrodes, this means the brain itself isn’t physically harmed.

The device is linked to a computer, which controls the direction of sound waves and captures signals from the brain. For this study, the team aimed the pulses at the posterior parietal cortex, a part of the “motor” aspect of the brain, which plans movement. If right now you’re thinking about scrolling down this page, that’s the brain region already activated, before your fingers actually perform the movement.

Then came the tests. The first looked at eye movements—something pretty necessary before planning actual body movements without tripping all over the place. Here, the monkeys learned to focus on a central dot on a computer screen. A second dot, either left or right, then flashed. The monkeys’ task was to flicker their eyes to the most recent dot. It’s something that seems easy for us, but requires sophisticated brain computation.

The second task was more straightforward. Rather than just moving their eyes to the second target dot, the monkeys learned to grab and manipulate a joystick to move a cursor to that target.

Using brain imaging to decode the mind and control movement. Image Credit: S. Norman, Caltech
As the monkeys learned, so did the device. Ultrasound data capturing brain activity was fed into a sophisticated machine learning algorithm to guess the monkeys’ intentions. Here’s the kicker: once trained, using data from just a single trial, the algorithm was able to correctly predict the monkeys’ actual eye movement—whether left or right—with roughly 78 percent accuracy. The accuracy for correctly maneuvering the joystick was even higher, at nearly 90 percent.

That’s crazy accurate, and very much needed for a mind-controlled prosthetic. If you’re using a mind-controlled cursor or limb, the last thing you’d want is to have to imagine the movement multiple times before you actually click the web button, grab the door handle, or move your robotic leg.

Even more impressive is the resolution. Sound waves seem omnipresent, but with focused ultrasound, it’s possible to measure brain activity at a resolution of 100 microns—roughly 10 neurons in the brain.

A Cyborg Future?
Before you start worrying about scientists blasting your brain with sound waves to hack your mind, don’t worry. The new tech still requires skull surgery, meaning that a small chunk of skull needs to be removed. However, the brain itself is spared. This means that compared to electrodes, ultrasound could offer less damage and potentially a far longer mind reading than anything currently possible.

There are downsides. Focused ultrasound is far younger than any electrode-based neural implants, and can’t yet reliably decode 360-degree movement or fine finger movements. For now, the tech requires a wire to link the device to a computer, which is off-putting to many people and will prevent widespread adoption. Add to that the inherent downside of focused ultrasound, which lags behind electrical recordings by roughly two seconds.

All that aside, however, the tech is just tiptoeing into a future where minds and machines seamlessly connect. Ultrasound can penetrate the skull, though not yet at the resolution needed for imaging and decoding brain activity. The team is already working with human volunteers with traumatic brain injuries, who had to have a piece of their skulls removed, to see how well ultrasound works for reading their minds.

“What’s most exciting is that functional ultrasound is a young technique with huge potential. This is just our first step in bringing high performance, less invasive brain-machine interface to more people,” said Norman.

Image Credit: Free-Photos / Pixabay Continue reading

Posted in Human Robots

#439040 Ready for duty: Healthcare robots get ...

Not long after the 1918 Spanish flu pandemic, Czech writer Karel Čapek first introduced the term “robot” to describe artificial people in his 1921 sci-fi play R.U.R. While we have not yet created the highly intelligent humanoid robots imagined by Čapek, the robots most commonly used today are complex systems that work alongside humans, assisting with an ever-expanding set of tasks. Continue reading

Posted in Human Robots

#439036 Video Friday: Shadow Plays Jenga, and ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Shadow Robot team couldn't resist! Our Operator, Joanna, is using the Shadow Teleoperation System which, fun and games aside, can help those in difficult, dangerous and distant jobs.

Shadow could challenge this MIT Jenga-playing robot, but I bet they wouldn't win:

[ Shadow Robot ]

Digit is gradually stomping the Agility Robotics logo into a big grassy field fully autonomously.

[ Agility Robotics ]

This is a pretty great and very short robotic magic show.

[ Mario the Magician ]

A research team at the Georgia Institute of Technology has developed a modular solution for drone delivery of larger packages without the need for a complex fleet of drones of varying sizes. By allowing teams of small drones to collaboratively lift objects using an adaptive control algorithm, the strategy could allow a wide range of packages to be delivered using a combination of several standard-sized vehicles.

[ GA Tech ]

I've seen this done using vision before, but Flexiv's Rizon 4s can keep a ball moving along a specific trajectory using only force sensing and control.

[ Flexiv ]

Thanks Yunfan!

This combination of a 3D aerial projection system and a sensing interface can be used as an interactive and intuitive control system for things like robot arms, but in this case, it's being used to make simulated pottery. Much less messy than the traditional way of doing it.

More details on Takafumi Matsumaru's work at the Bio-Robotics & Human-Mechatronics Laboratory at Waseda University at the link below.

[ BLHM ]

U.S. Vice President Kamala Harris called astronauts Shannon Walker and Kate Rubins on the ISS, and they brought up Astrobee, at which point Shannon reaches over and rips Honey right off of her charging dock to get her on camera.

[ NASA ]

Here's a quick three minute update on Perseverance and Ingenuity from JPL.

[ Mars 2020 ]

Rigid grippers used in existing aerial manipulators require precise positioning to achieve successful grasps and transmit large contact forces that may destabilize the drone. This limits the speed during grasping and prevents “dynamic grasping,” where the drone attempts to grasp an object while moving. On the other hand, biological systems (e.g. birds) rely on compliant and soft parts to dampen contact forces and compensate for grasping inaccuracy, enabling impressive feats. This paper presents the first prototype of a soft drone—a quadrotor where traditional (i.e. rigid) landing gears are replaced with a soft tendon-actuated gripper to enable aggressive grasping.

[ MIT ]

In this video we present results from a field deployment inside the Løkken Mine underground pyrite mine in Norway. The Løkken mine was operative from 1654 to 1987 and contains narrow but long corridors, alongside vast rooms and challenging vertical stopes. In this field study we evaluated selected autonomous exploration and visual search capabilities of a subset of the aerial robots of Team CERBERUS towards the goal of complete subterranean autonomy.

[ Team CERBERUS ]

What you can do with a 1,000 FPS projector with a high speed tracking system.

[ Ishikawa Group ]

ANYbotics’ collaboration with BASF, one of the largest global chemical manufacturers, displays the efficiency, quality, and scalability of robotic inspection and data-collection capabilities in complex industrial environments.

[ ANYbotics ]

Does your robot arm need a stylish jacket?

[ Fraunhofer ]

Trossen Robotics unboxes a Unitree A1, and it's actually an unboxing where they have to figure out everything from scratch.

[ Trossen ]

Robots have learned to drive cars, assist in surgeries―and vacuum our floors. But can they navigate the unwritten rules of a busy sidewalk? Until they can, robotics experts Leila Takayama and Chris Nicholson believe, robots won’t be able to fulfill their immense potential. In this conversation, Chris and Leila explore the future of robotics and the role open source will play in it.

[ Red Hat ]

Christoph Bartneck's keynote at the 6th Joint UAE Symposium on Social Robotics, focusing on what roles robots can play during the Covid crisis and why so many social robots fail in the market.

[ HIT Lab ]

Decision-making based on arbitrary criteria is legal in some contexts, such as employment, and not in others, such as criminal sentencing. As algorithms replace human deciders, HAI-EIS fellow Kathleen Creel argues arbitrariness at scale is morally and legally problematic. In this HAI seminar, she explains how the heart of this moral issue relates to domination and a lack of sufficient opportunity for autonomy. It relates in interesting ways to the moral wrong of discrimination. She proposes technically informed solutions that can lessen the impact of algorithms at scale and so mitigate or avoid the moral harm identified.

[ Stanford HAI ]

Sawyer B. Fuller speaks on Autonomous Insect-Sized Robots at the UC Berkeley EECS Colloquium series.

Sub-gram (insect-sized) robots have enormous potential that is largely untapped. From a research perspective, their extreme size, weight, and power (SWaP) constraints also forces us to reimagine everything from how they compute their control laws to how they are fabricated. These questions are the focus of the Autonomous Insect Robotics Laboratory at the University of Washington. I will discuss potential applications for insect robots and recent advances from our group. These include the first wireless flights of a sub-gram flapping-wing robot that weighs barely more than a toothpick. I will describe efforts to expand its capabilities, including the first multimodal ground-flight locomotion, the first demonstration of steering control, and how to find chemical plume sources by integrating the smelling apparatus of a live moth. I will also describe a backpack for live beetles with a steerable camera and conceptual design of robots that could scale all the way down to the “gnat robots” first envisioned by Flynn & Brooks in the ‘80s.

[ UC Berkeley ]

Thanks Fan!

Joshua Vander Hook, Computer Scientist, NIAC Fellow, and Technical Group Supervisor at NASA JPL, presents an overview of the AI Group(s) at JPL, and recent work on single and multi-agent autonomous systems supporting space exploration, Earth science, NASA technology development, and national defense programs.

[ UMD ] Continue reading

Posted in Human Robots