Tag Archives: we

#430556 Forget Flying Cars, the Future Is ...

Flying car concepts have been around nearly as long as their earthbound cousins, but no one has yet made them a commercial success. MIT engineers think we’ve been coming at the problem from the wrong direction; rather than putting wings on cars, we should be helping drones to drive.
The team from the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) added wheels to a fleet of eight mini-quadcopters and tested driving and flying them around a tiny toy town made out of cardboard and fabric.
Adding the ability to drive reduced the distance the drone could fly by 14 percent compared to a wheel-less version. But while driving was slower, the drone could travel 150 percent further than when flying. The result is a vehicle that combines the speed and mobility of flying with the energy-efficiency of driving.

CSAIL director Daniela Rus told MIT News their work suggested that when looking to create flying cars, it might make more sense to build on years of research into drones rather than trying to simply “put wings on cars.”
Historically, flying car concepts have looked like someone took apart a Cessna light aircraft and a family sedan, mixed all the parts up, and bolted them back together again. Not everyone has abandoned this approach—two of the most developed flying car designs from Terrafugia and AeroMobil are cars with folding wings that need an airstrip to take off.
But flying car concepts are looking increasingly drone-like these days, with multiple small rotors, electric propulsion and vertical take-off abilities. Take the eHang 184 autonomous aerial vehicle being developed in China, the Kitty Hawk all-electric aircraft backed by Google founder Larry Page, which is little more than a quadcopter with a seat, the AirQuadOne designed by UK consortium Neva Aerospace, or Lilium Aviation’s Jet.
The attraction is obvious. Electric-powered drones are more compact, maneuverable, and environmentally friendly, making them suitable for urban environments.
Most of these vehicles are not quite the same as those proposed by the MIT engineers, as they’re pure flying machines. But a recent Airbus concept builds on the same principle that the future of urban mobility is vehicles that can both fly and drive. Its Pop.Up design is a two-passenger pod that can either be clipped to a set of wheels or hang under a quadcopter.
Importantly, they envisage their creation being autonomous in both flight and driving modes. And they’re not the only ones who think the future of flying cars is driverless. Uber has committed to developing a network of autonomous air taxis within a decade. This spring, Dubai announced it would launch a pilotless passenger drone service using the Ehang 184 as early as next month (July).
While integrating fully-fledged autonomous flying cars into urban environments will be far more complex, the study by Rus and her colleagues provides a good starting point for the kind of 3D route-planning and collision avoidance capabilities this would require.
The team developed multi-robot path planning algorithms that were able to control all eight drones as they flew and drove around their mock up city, while also making sure they didn’t crash into each other and avoided no-fly zones.
“This work provides an algorithmic solution for large-scale, mixed-mode transportation and shows its applicability to real-world problems,” Jingjin Yu, a computer science professor at Rutgers University who was not involved in the research, told MIT News.
This vision of a driverless future for flying cars might be a bit of a disappointment for those who’d envisaged themselves one day piloting their own hover car just like George Jetson. But autonomy and Uber-like ride-hailing business models are likely to be attractive, as they offer potential solutions to three of the biggest hurdles drone-like passenger vehicles face.
Firstly, it makes the vehicles accessible to anyone by removing the need to learn how to safely pilot an aircraft. Secondly, battery life still limits most electric vehicles to flight times measured in minutes. For personal vehicles this could be frustrating, but if you’re just hopping in a driverless air taxi for a five minute trip across town it’s unlikely to become apparent to you.
Operators of the service simply need to make sure they have a big enough fleet to ensure a charged vehicle is never too far away, or they’ll need a way to swap out batteries easily, such as the one suggested by the makers of the Volocopter electric helicopter.
Finally, there has already been significant progress in developing technology and regulations needed to integrate autonomous drones into our airspace that future driverless flying cars can most likely piggyback off of.
Safety requirements will inevitably be more stringent, but adding more predictable and controllable autonomous drones to the skies is likely to be more attractive to regulators than trying to license and police thousands of new amateur pilots.
Image Credit: Lilium Continue reading

Posted in Human Robots

#428831 The Brain Tech to Merge Humans and AI Is ...

Are you scared of artificial intelligence (AI)? Do you believe the warnings from folks like Prof. Stephen Hawking, Elon Musk and others? Is AI the greatest tool humanity will ever create, or are we “summoning the demon”? To quote the head of AI at Singularity University, Neil Jacobstein, “It’s not artificial intelligence I’m worried about, it’s human stupidity.” In a recent Abundance 360 webinar, I interviewed Bryan Johnson, the founder of a new company called… read more Continue reading

Posted in Human Robots

#428635 The 6 Ds of Tech Disruption: A Guide to ...

“The Six Ds are a chain reaction of technological progression, a road map of rapid development that always leads to enormous upheaval and opportunity.” –Peter Diamandis and Steven Kotler, Bold We live in incredible times. News travels the globe in an instant. Music, movies, games, communication, and knowledge are ever-available on always-connected devices. From biotechnology to artificial intelligence, powerful technologies that were once only available to huge organizations and governments are becoming more accessible and… read more Continue reading

Posted in Human Robots

#428626 Cimcorp to fully automate Turkish Tire ...

Cimcorp Selected to Supply Turnkey Automated Handling System to Large Turkish Tire Manufacturer, Petlas
The leading tire handling specialist’s system will handle tires in the tire-finishing and palletizing areas in Turkish manufacturer’s expanded facility
Ulvila, Finland – November 9, 2016 – Cimcorp, leading global supplier of turnkey automation for intralogistics and tire-handling solutions, announces it has been selected to implement a fully automated handling system in Petlas Tire Corporation’s (Petlas) factory in Kirsehir, Turkey. Based on Cimcorp’s Dream Factory solution, the automation will take care of the handling of passenger car radial (PCR) finished tires in the tire-finishing and palletizing areas. Work on the order is already underway and the’ turnkey material handling system will become fully operational in fall 2017.
The order, Cimcorp’s first project for Petlas, is part of a huge investment program to expand the Kirsehir plant in order to increase Petlas’ PCR production capacity and meet growing demand.
Turkey achieved record car production and export levels in 2015, with production up by 16 percent and exports up 12 percent over the preceding year. This growth rate is higher than in any other European country and, with its automotive plants rolling out 1.36 million vehicles in 2015, Turkey is now the seventh largest automotive producer in Europe.
With the production equipment – the tire-building machines, presses and testing machines – already installed, Petlas is commencing the automation of the plant’s material handling. This comprises Cimcorp’s robotic buffer stores, tire conveyors and control software – Cimcorp WCS (Warehouse Control Software) – to take care of all material flows. Using linear robots operating on overhead gantries, the system will automate the handling and transfer of finished tires from the trimming stations, through visual inspection and uniformity testing, to palletizing.
Yahya Ertem, general manager, Petlas Tire Corporation, said, “We think highly of Cimcorp’s software, which integrates the machines into one entity and keeps the flow of material and data under complete control. Cimcorp’s Dream Factory solution fits with our vision to achieve ‘excellence in business’ and will help us to achieve our strategic goals.”
Tero Peltomäki, vice president of sales and projects, Cimcorp, said, “It has been fantastic to work with the Petlas team, honing our design into the best possible solution for the Kirsehir plant. The automation will help Petlas to enhance its market position as a leading tire manufacturer and distributor and we look forward to working on future automation projects with the company.”
To receive high-resolution images, please send requests to Heidi Scott via email at: lasendio@dprgroup.com

About Cimcorp
Cimcorp Group – part of Murata Machinery, Ltd. (Muratec) – is a leading global supplier of turnkey automation for intralogistics, using advanced robotics and software technologies. As well as being a manufacturer and integrator of pioneering material handling systems for the tire industry, Cimcorp has developed unique robotic solutions for order fulfillment and storage that are being used in the food & beverage, retail, e-commerce, FMCG and postal services sectors. With locations in Finland, Canada and the United States, the group has around 300 employees and has delivered over 2,000 logistics automation solutions. Designed to reduce operating costs, ensure traceability and improve efficiency, these systems are used within manufacturing and distribution centers in 40 countries across five continents. For more information, visit www.cimcorp.com.
About Petlas Tire Corporation (Petlas)
Founded in 1976, Petlas Tire Corporation has operations in 98 countries worldwide and employs 2,150 people. The company’s plant in Kirsehir currently has the capacity to produce 8 million PCR (passenger car radial) tires, 2 million agricultural tires, 500,000 TBR (truck & bus radial) tires and 300,000 OTR (off-the-road) tires per year. For more information, visit www.petlas.com.

The post Cimcorp to fully automate Turkish Tire Manufacturer Petlas appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428574 6 Big Ways Tech Is Rewriting Society’s ...

Technology is advancing so rapidly that we will experience radical changes in society not only in our lifetimes but in the coming years. We have already begun to see ways in which computing, sensors, artificial intelligence and genomics are reshaping entire industries and our daily lives. As we undergo this rapid change, many of the old assumptions that we have relied on will no longer apply. Technology is creating a new set of rules that will… read more Continue reading

Posted in Human Robots