Tag Archives: way

#435634 Robot Made of Clay Can Sculpt Its Own ...

We’re very familiar with a wide variety of transforming robots—whether for submarines or drones, transformation is a way of making a single robot adaptable to different environments or tasks. Usually, these robots are restricted to a discrete number of configurations—perhaps two or three different forms—because of the constraints imposed by the rigid structures that robots are typically made of.

Soft robotics has the potential to change all this, with robots that don’t have fixed forms but instead can transform themselves into whatever shape will enable them to do what they need to do. At ICRA in Montreal earlier this year, researchers from Yale University demonstrated a creative approach toward a transforming robot powered by string and air, with a body made primarily out of clay.

Photo: Evan Ackerman

The robot is actuated by two different kinds of “skin,” one layered on top of another. There’s a locomotion skin, made of a pattern of pneumatic bladders that can roll the robot forward or backward when the bladders are inflated sequentially. On top of that is the morphing skin, which is cable-driven, and can sculpt the underlying material into a variety of shapes, including spheres, cylinders, and dumbbells. The robot itself consists of both of those skins wrapped around a chunk of clay, with the actuators driven by offboard power and control. Here it is in action:

The Yale researchers have been experimenting with morphing robots that use foams and tensegrity structures for their bodies, but that stuff provides a “restoring force,” springing back into its original shape once the actuation stops. Clay is different because it holds whatever shape it’s formed into, making the robot more energy efficient. And if the dumbbell shape stops being useful, the morphing layer can just squeeze it back into a cylinder or a sphere.

While this robot, and the sample transformation shown in the video, are relatively simplistic, the researchers suggest some ways in which a more complex version could be used in the future:

Photo: IEEE Xplore

This robot’s morphing skin sculpts its clay body into different shapes.

Applications where morphing and locomotion might serve as complementary functions are abundant. For the example skins presented in this work, a search-and-rescue operation could use the clay as a medium to hold a payload such as sensors or transmitters. More broadly, applications include resource-limited conditions where supply chains for materiel are sparse. For example, the morphing sequence shown in Fig. 4 [above] could be used to transform from a rolling sphere to a pseudo-jointed robotic arm. With such a morphing system, it would be possible to robotically morph matter into different forms to perform different functions.

Read this article for free on IEEE Xplore until 5 September 2019

Morphing Robots Using Robotic Skins That Sculpt Clay, by Dylan S. Shah, Michelle C. Yuen, Liana G. Tilton, Ellen J. Yang, and Rebecca Kramer-Bottiglio from Yale University, was presented at ICRA 2019 in Montreal.

[ Yale Faboratory ]

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#435626 Video Friday: Watch Robots Make a Crepe ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. Every week, we also post a calendar of upcoming robotics events; here's what we have so far (send us your events!):

Robotronica – August 18, 2019 – Brisbane, Australia
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi
Humanoids 2019 – October 15-17, 2019 – Toronto
ARSO 2019 – October 31-November 2, 2019 – Beijing
ROSCon 2019 – October 31-November 1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

Team CoSTAR (JPL, MIT, Caltech, KAIST, LTU) has one of the more diverse teams of robots that we’ve seen:

[ Team CoSTAR ]

A team from Carnegie Mellon University and Oregon State University is sending ground and aerial autonomous robots into a Pittsburgh-area mine to prepare for this month’s DARPA Subterranean Challenge.

“Look at that fire extinguisher, what a beauty!” Expect to hear a lot more of that kind of weirdness during SubT.

[ CMU ]

Unitree Robotics is starting to batch-manufacture Laikago Pro quadrupeds, and if you buy four of them, they can carry you around in a chair!

I’m also really liking these videos from companies that are like, “We have a whole bunch of robot dogs now—what weird stuff can we do with them?”

[ Unitree Robotics ]

Why take a handful of pills every day for all the stuff that's wrong with you, when you could take one custom pill instead? Because custom pills are time-consuming to make, that’s why. But robots don’t care!

Multiply Labs’ factory is designed to operate in parallel. All the filling robots and all the quality-control robots are operating at the same time. The robotic arm, in the meanwhile, shuttles dozens of trays up and down the production floor, making sure that each capsule is filled with the right drugs. The manufacturing cell shown in this article can produce 10,000 personalized capsules in an 8-hour shift. A single cell occupies just 128 square feet (12 square meters) on the production floor. This means that a regular production facility (~10,000 square feet, or 929 m2 ) can house 78 cells, for an overall output of 780,000 capsules per shift. This exceeds the output of most traditional manufacturers—while producing unique personalized capsules!

[ Multiply Labs ]

Thanks Fred!

If you’re getting tired of all those annoying drones that sound like giant bees, just have a listen to this turbine-powered one:

[ Malloy Aeronautics ]

In retrospect, it’s kind of amazing that nobody has bothered to put a functional robotic dog head on a quadruped robot before this, right?

Equipped with sensors, high-tech radar imaging, cameras and a directional microphone, this 100-pound (45-kilogram) super-robot is still a “puppy-in-training.” Just like a regular dog, he responds to commands such as “sit,” “stand,” and “lie down.” Eventually, he will be able to understand and respond to hand signals, detect different colors, comprehend many languages, coordinate his efforts with drones, distinguish human faces, and even recognize other dogs.

As an information scout, Astro’s key missions will include detecting guns, explosives and gun residue to assist police, the military, and security personnel. This robodog’s talents won’t just end there, he also can be programmed to assist as a service dog for the visually impaired or to provide medical diagnostic monitoring. The MPCR team also is training Astro to serve as a first responder for search-and-rescue missions such as hurricane reconnaissance as well as military maneuvers.

[ FAU ]

And now this amazing video, “The Coke Thief,” from ICRA 2005 (!):

[ Paper ]

CYBATHLON Series put the focus on one or two of the six disciplines and are organized in cooperation with international universities and partners. The CYBATHLON Arm and Leg Prosthesis Series took place in Karlsruhe, Germany, from 16 to 18 May and was organized in cooperation with the Karlsruhe Institute of Technology (KIT) and the trade fair REHAB Karlsruhe.

The CYBATHLON Wheelchair Series took place in Kawasaki, Japan on 5 May 2019 and was organized in cooperation with the CYBATHLON Wheelchair Series Japan Organizing Committee and supported by the Swiss Embassy.

[ Cybathlon ]

Rainbow crepe robot!

There’s also this other robot, which I assume does something besides what's in the video, because otherwise it appears to be a massively overengineered way of shaping cooked rice into a chubby triangle.

[ PC Watch ]

The Weaponized Plastic Fighting League at Fetch Robotics has had another season of shardation, deintegration, explodification, and other -tions. Here are a couple fan favorite match videos:

[ Fetch Robotics ]

This video is in German, but it’s worth watching for the three seconds of extremely satisfying footage showing a robot twisting dough into pretzels.

[ Festo ]

Putting brains into farming equipment is a no-brainer, since it’s a semi-structured environment that's generally clear of wayward humans driving other vehicles.

[ Lovol ]

Thanks Fan!

Watch some robots assemble suspiciously Lego-like (but definitely not actually Lego) minifigs.

[ DevLinks ]

The Robotics Innovation Facility (RIFBristol) helps businesses, entrepreneurs, researchers and public sector bodies to embrace the concept of ‘Industry 4.0'. From training your staff in robotics, and demonstrating how automation can improve your manufacturing processes, to prototyping and validating your new innovations—we can provide the support you need.

[ RIF ]

Ryan Gariepy from Clearpath Robotics (and a bunch of other stuff) gave a talk at ICRA with the title of “Move Fast and (Don’t) Break Things: Commercializing Robotics at the Speed of Venture Capital,” which is more interesting when you know that this year’s theme was “Notable Failures.”

[ Clearpath Robotics ]

In this week’s episode of Robots in Depth, Per interviews Michael Nielsen, a computer vision researcher at the Danish Technological Institute.

Michael worked with a fusion of sensors like stereo vision, thermography, radar, lidar and high-frame-rate cameras, merging multiple images for high dynamic range. All this, to be able to navigate the tricky situation in a farm field where you need to navigate close to or even in what is grown. Multibaseline cameras were also used to provide range detection over a wide range of distances.

We also learn about how he expanded his work into sorting recycling, a very challenging problem. We also hear about the problems faced when using time of flight and sheet of light cameras. He then shares some good results using stereo vision, especially combined with blue light random dot projectors.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435616 Video Friday: AlienGo Quadruped Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

I know you’ve all been closely following our DARPA Subterranean Challenge coverage here and on Twitter, but here are short recap videos of each day just in case you missed something.

[ DARPA SubT ]

After Laikago, Unitree Robotics is now introducing AlienGo, which is looking mighty spry:

We’ve seen MIT’s Mini Cheetah doing backflips earlier this year, but apparently AlienGo is now the largest and heaviest quadruped to perform the maneuver.

[ Unitree ]

The majority of soft robots today rely on external power and control, keeping them tethered to off-board systems or rigged with hard components. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Caltech have developed soft robotic systems, inspired by origami, that can move and change shape in response to external stimuli, paving the way for fully untethered soft robots.

The Rollbot begins as a flat sheet, about 8 centimeters long and 4 centimeters wide. When placed on a hot surface, about 200°C, one set of hinges folds and the robot curls into a pentagonal wheel.

Another set of hinges is embedded on each of the five sides of the wheel. A hinge folds when in contact with the hot surface, propelling the wheel to turn to the next side, where the next hinge folds. As they roll off the hot surface, the hinges unfold and are ready for the next cycle.

[ Harvard SEAS ]

A new research effort at Caltech aims to help people walk again by combining exoskeletons with spinal stimulation. This initiative, dubbed RoAM (Robotic Assisted Mobility), combines the research of two Caltech roboticists: Aaron Ames, who creates the algorithms that enable walking by bipedal robots and translates these to govern the motion of exoskeletons and prostheses; and Joel Burdick, whose transcutaneous spinal implants have already helped paraplegics in clinical trials to recover some leg function and, crucially, torso control.

[ Caltech ]

Once ExoMars lands, it’s going to have to get itself off of the descent stage and onto the surface, which could be tricky. But practice makes perfect, or as near as you can get on Earth.

That wheel walking technique is pretty cool, and it looks like ExoMars will be able to handle terrain that would scare NASA’s Mars rovers away.

[ ExoMars ]

I am honestly not sure whether this would make the game of golf more or less fun to watch:

[ Nissan ]

Finally, a really exciting use case for Misty!

It can pick up those balls too, right?

[ Misty ]

You know you’re an actual robot if this video doesn’t make you crave Peeps.

[ Soft Robotics ]

COMANOID investigates the deployment of robotic solutions in well-identified Airbus airliner assembly operations that are tedious for human workers and for which access is impossible for wheeled or rail-ported robotic platforms. This video presents a demonstration of autonomous placement of a part inside the aircraft fuselage. The task is performed by TORO, the torque-controlled humanoid robot developed at DLR.

[ COMANOID ]

It’s a little hard to see in this video, but this is a cable-suspended robot arm that has little tiny robot arms that it waves around to help damp down vibrations.

[ CoGiRo ]

This week in Robots in Depth, Per speaks with author Cristina Andersson.

In 2013 she organized events in Finland during European robotics week and found that many people was very interested but that there was also a big lack of knowledge.

She also talks about introducing robotics in society in a way that makes it easy for everyone to understand the benefits as this will make the process much easier. When people see the clear benefits in one field or situation they will be much more interested in bringing robotics in to their private or professional lives.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435614 3 Easy Ways to Evaluate AI Claims

When every other tech startup claims to use artificial intelligence, it can be tough to figure out if an AI service or product works as advertised. In the midst of the AI “gold rush,” how can you separate the nuggets from the fool’s gold?

There’s no shortage of cautionary tales involving overhyped AI claims. And applying AI technologies to health care, education, and law enforcement mean that getting it wrong can have real consequences for society—not just for investors who bet on the wrong unicorn.

So IEEE Spectrum asked experts to share their tips for how to identify AI hype in press releases, news articles, research papers, and IPO filings.

“It can be tricky, because I think the people who are out there selling the AI hype—selling this AI snake oil—are getting more sophisticated over time,” says Tim Hwang, director of the Harvard-MIT Ethics and Governance of AI Initiative.

The term “AI” is perhaps most frequently used to describe machine learning algorithms (and deep learning algorithms, which require even less human guidance) that analyze huge amounts of data and make predictions based on patterns that humans might miss. These popular forms of AI are mostly suited to specialized tasks, such as automatically recognizing certain objects within photos. For that reason, they are sometimes described as “weak” or “narrow” AI.

Some researchers and thought leaders like to talk about the idea of “artificial general intelligence” or “strong AI” that has human-level capacity and flexibility to handle many diverse intellectual tasks. But for now, this type of AI remains firmly in the realm of science fiction and is far from being realized in the real world.

“AI has no well-defined meaning and many so-called AI companies are simply trying to take advantage of the buzz around that term,” says Arvind Narayanan, a computer scientist at Princeton University. “Companies have even been caught claiming to use AI when, in fact, the task is done by human workers.”

Here are three ways to recognize AI hype.

Look for Buzzwords
One red flag is what Hwang calls the “hype salad.” This means stringing together the term “AI” with many other tech buzzwords such as “blockchain” or “Internet of Things.” That doesn’t automatically disqualify the technology, but spotting a high volume of buzzwords in a post, pitch, or presentation should raise questions about what exactly the company or individual has developed.

Other experts agree that strings of buzzwords can be a red flag. That’s especially true if the buzzwords are never really explained in technical detail, and are simply tossed around as vague, poorly-defined terms, says Marzyeh Ghassemi, a computer scientist and biomedical engineer at the University of Toronto in Canada.

“I think that if it looks like a Google search—picture ‘interpretable blockchain AI deep learning medicine’—it's probably not high-quality work,” Ghassemi says.

Hwang also suggests mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” It’s a way of seeing whether an individual or organization is treating the technology like magic. If so—that’s another good reason to ask more questions about what exactly the AI technology involves.

And even the visual imagery used to illustrate AI claims can indicate that an individual or organization is overselling the technology.

“I think that a lot of the people who work on machine learning on a day-to-day basis are pretty humble about the technology, because they’re largely confronted with how frequently it just breaks and doesn't work,” Hwang says. “And so I think that if you see a company or someone representing AI as a Terminator head, or a big glowing HAL eye or something like that, I think it’s also worth asking some questions.”

Interrogate the Data

It can be hard to evaluate AI claims without any relevant expertise, says Ghassemi at the University of Toronto. Even experts need to know the technical details of the AI algorithm in question and have some access to the training data that shaped the AI model’s predictions. Still, savvy readers with some basic knowledge of applied statistics can search for red flags.

To start, readers can look for possible bias in training data based on small sample sizes or a skewed population that fails to reflect the broader population, Ghassemi says. After all, an AI model trained only on health data from white men would not necessarily achieve similar results for other populations of patients.

“For me, a red flag is not demonstrating deep knowledge of how your labels are defined.”
—Marzyeh Ghassemi, University of Toronto

How machine learning and deep learning models perform also depends on how well humans labeled the sample datasets use to train these programs. This task can be straightforward when labeling photos of cats versus dogs, but gets more complicated when assigning disease diagnoses to certain patient cases.

Medical experts frequently disagree with each other on diagnoses—which is why many patients seek a second opinion. Not surprisingly, this ambiguity can also affect the diagnostic labels that experts assign in training datasets. “For me, a red flag is not demonstrating deep knowledge of how your labels are defined,” Ghassemi says.

Such training data can also reflect the cultural stereotypes and biases of the humans who labeled the data, says Narayanan at Princeton University. Like Ghassemi, he recommends taking a hard look at exactly what the AI has learned: “A good way to start critically evaluating AI claims is by asking questions about the training data.”

Another red flag is presenting an AI system’s performance through a single accuracy figure without much explanation, Narayanan says. Claiming that an AI model achieves “99 percent” accuracy doesn’t mean much without knowing the baseline for comparison—such as whether other systems have already achieved 99 percent accuracy—or how well that accuracy holds up in situations beyond the training dataset.

Narayanan also emphasized the need to ask questions about an AI model’s false positive rate—the rate of making wrong predictions about the presence of a given condition. Even if the false positive rate of a hypothetical AI service is just one percent, that could have major consequences if that service ends up screening millions of people for cancer.

Readers can also consider whether using AI in a given situation offers any meaningful improvement compared to traditional statistical methods, says Clayton Aldern, a data scientist and journalist who serves as managing director for Caldern LLC. He gave the hypothetical example of a “super-duper-fancy deep learning model” that achieves a prediction accuracy of 89 percent, compared to a “little polynomial regression model” that achieves 86 percent on the same dataset.

“We're talking about a three-percentage-point increase on something that you learned about in Algebra 1,” Aldern says. “So is it worth the hype?”

Don’t Ignore the Drawbacks

The hype surrounding AI isn’t just about the technical merits of services and products driven by machine learning. Overblown claims about the beneficial impacts of AI technology—or vague promises to address ethical issues related to deploying it—should also raise red flags.

“If a company promises to use its tech ethically, it is important to question if its business model aligns with that promise,” Narayanan says. “Even if employees have noble intentions, it is unrealistic to expect the company as a whole to resist financial imperatives.”

One example might be a company with a business model that depends on leveraging customers’ personal data. Such companies “tend to make empty promises when it comes to privacy,” Narayanan says. And, if companies hire workers to produce training data, it’s also worth asking whether the companies treat those workers ethically.

The transparency—or lack thereof—about any AI claim can also be telling. A company or research group can minimize concerns by publishing technical claims in peer-reviewed journals or allowing credible third parties to evaluate their AI without giving away big intellectual property secrets, Narayanan says. Excessive secrecy is a big red flag.

With these strategies, you don’t need to be a computer engineer or data scientist to start thinking critically about AI claims. And, Narayanan says, the world needs many people from different backgrounds for societies to fully consider the real-world implications of AI.

Editor’s Note: The original version of this story misspelled Clayton Aldern’s last name as Alderton. Continue reading

Posted in Human Robots

#435605 All of the Winners in the DARPA ...

The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.

First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.

Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.

Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.

DARPA also awarded a bunch of “superlative awards” after SubT:

Most Accurate Artifact: Team Explorer

To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.

Down to the Wire: Team CSIRO Data61

With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.

Most Distinctive Robots: Team Robotika

Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.

Most Robots Per Person: Team Coordinated Robotics

Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.

Fan Favorite: Team NCTU

Photo: Evan Ackerman/IEEE Spectrum

The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.

DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:

The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.

DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.

[ DARPA SubT ] Continue reading

Posted in Human Robots