Tag Archives: way
#437753 iRobot’s New Education Robot Makes ...
iRobot has been on a major push into education robots recently. They acquired Root Robotics in 2019, and earlier this year, launched an online simulator and associated curriculum designed to work in tandem with physical Root robots. The original Root was intended to be a classroom robot, with one of its key features being the ability to stick to (and operate on) magnetic virtual surfaces, like whiteboards. And as a classroom robot, at $200, it’s relatively affordable, if you can buy one or two and have groups of kids share them.
For kids who are more focused on learning at home, though, $200 is a lot for a robot that doesn't even keep your floors clean. And as nice as it is to have a free simulator, any kid will tell you that it’s way cooler to have a real robot to mess around with. Today, iRobot is announcing a new version of Root that’s been redesigned for home use, with a $129 price that makes it significantly more accessible to folks outside of the classroom.
The Root rt0 is a second version of the Root robot—the more expensive, education-grade Root rt1 is still available. To bring the cost down, the rt0 is missing some features that you can still find in the rt1. Specifically, you don’t get the internal magnets to stick the robot to vertical surfaces, there are no cliff sensors, and you don’t get a color scanner or an eraser. But for home use, the internal magnets are probably not necessary anyway, and the rest of that stuff seems like a fair compromise for a cost reduction of 30 percent.
Photo: iRobot
One of the new accessories for the iRobot Root rt0 is a “Brick Top” that snaps onto the upper face the robot via magnets. The accessory can be used with LEGOs and other LEGO-compatible bricks, opening up an enormous amount of customization.
It’s not all just taking away, though. There’s also a new $20 accessory, a LEGO-ish “Brick Top” that snaps onto the upper face of Root (either version) via magnets. The plate can be used with LEGO bricks and other LEGO-compatible things. This opens up an enormous amount of customization, and it’s for more than just decoration, since Root rt0 has the ability to interact with whatever’s on top of it via its actuated marker. Root can move the marker up and down, the idea being that you can programmatically turn lines on and off. By replacing the marker with a plastic thingy that sticks up through the body of the robot, the marker up/down command can be used to actuate something on the brick top. In the video, that’s what triggers the catapult.
Photo: iRobot
By attaching a marker, you can program Root to draw. The robot has a motor that can move the marker up and down.
This less expensive version of Root still has access to the online simulator, as well as the multi-level coding interface that allows kids to seamlessly transition through multiple levels of coding complexity, from graphical to text. There’s a new Android app coming out today, and you can access everything through web-based apps on Chrome OS, Windows and macOS, as well as on iOS. iRobot tells us that they’ve also recently expanded their online learning library full of Root-based educational activities. In particular, they’ve added a new category on “Social Emotional Learning,” the goal of which is to help kids develop things like social awareness, self-management, decision making, and relationship skills. We’re not quite sure how you teach those things with a little hexagonal robot, but we like that iRobot is giving it a try.
Root coding robots are designed for kids age 6 and up, ships for free, and is available now.
[ iRobot Root ] Continue reading
#437751 Startup and Academics Find Path to ...
Engineers have been chasing a form of AI that could drastically lower the energy required to do typical AI things like recognize words and images. This analog form of machine learning does one of the key mathematical operations of neural networks using the physics of a circuit instead of digital logic. But one of the main things limiting this approach is that deep learning’s training algorithm, back propagation, has to be done by GPUs or other separate digital systems.
Now University of Montreal AI expert Yoshua Bengio, his student Benjamin Scellier, and colleagues at startup Rain Neuromorphics have come up with way for analog AIs to train themselves. That method, called equilibrium propagation, could lead to continuously learning, low-power analog systems of a far greater computational ability than most in the industry now consider possible, according to Rain CTO Jack Kendall.
Analog circuits could save power in neural networks in part because they can efficiently perform a key calculation, called multiply and accumulate. That calculation multiplies values from inputs according to various weights, and then it sums all those values up. Two fundamental laws of electrical engineering can basically do that, too. Ohm’s Law multiplies voltage and conductance to give current, and Kirchoff’s Current Law sums the currents entering a point. By storing a neural network’s weights in resistive memory devices, such as memristors, multiply-and-accumulate can happen completely in analog, potentially reducing power consumption by orders of magnitude.
The reason analog AI systems can’t train themselves today has a lot to do with the variability of their components. Just like real neurons, those in analog neural networks don’t all behave exactly alike. To do back propagation with analog components, you must build two separate circuit pathways. One going forward to come up with an answer (called inferencing), the other going backward to do the learning so that the answer becomes more accurate. But because of the variability of analog components, the pathways don't match up.
“You end up accumulating error as you go backwards through the network,” says Bengio. To compensate, a network would need lots of power-hungry analog-to-digital and digital-to-analog circuits, defeating the point of going analog.
Equilibrium propagation allows learning and inferencing to happen on the same network, partly by adjusting the behavior of the network as a whole. “What [equilibrium propagation] allows us to do is to say how we should modify each of these devices so that the overall circuit performs the right thing,” he says. “We turn the physical computation that is happening in the analog devices directly to our advantage.”
Right now, equilibrium propagation is only working in simulation. But Rain plans to have a hardware proof-of-principle in late 2021, according to CEO and cofounder Gordon Wilson. “We are really trying to fundamentally reimagine the hardware computational substrate for artificial intelligence, find the right clues from the brain, and use those to inform the design of this,” he says. The result could be what they call end-to-end analog AI systems that capable of running sophisticated robots or even playing a role in data centers. Both of those are currently considered beyond the capabilities of analog AI, which is now focused only on adding inferencing abilities to sensors and other low-power “edge” devices, while leaving the learning to GPUs. Continue reading
#437747 High Performance Ornithopter Drone Is ...
The vast majority of drones are rotary-wing systems (like quadrotors), and for good reason: They’re cheap, they’re easy, they scale up and down well, and we’re getting quite good at controlling them, even in very challenging environments. For most applications, though, drones lose out to birds and their flapping wings in almost every way—flapping wings are very efficient, enable astonishing agility, and are much safer, able to make compliant contact with surfaces rather than shredding them like a rotor system does. But flapping wing have their challenges too: Making flapping-wing robots is so much more difficult than just duct taping spinning motors to a frame that, with a few exceptions, we haven’t seen nearly as much improvement as we have in more conventional drones.
In Science Robotics last week, a group of roboticists from Singapore, Australia, China, and Taiwan described a new design for a flapping-wing robot that offers enough thrust and control authority to make stable transitions between aggressive flight modes—like flipping and diving—while also being able to efficiently glide and gently land. While still more complex than a quadrotor in both hardware and software, this ornithopter’s advantages might make it worthwhile.
One reason that making a flapping-wing robot is difficult is because the wings have to move back and forth at high speed while electric motors spin around and around at high speed. This requires a relatively complex transmission system, which (if you don’t do it carefully), leads to weight penalties and a significant loss of efficiency. One particular challenge is that the reciprocating mass of the wings tends to cause the entire robot to flex back and forth, which alternately binds and disengages elements in the transmission system.
The researchers’ new ornithopter design mitigates the flexing problem using hinges and bearings in pairs. Elastic elements also help improve efficiency, and the ornithopter is in fact more efficient with its flapping wings than it would be with a rotary propeller-based propulsion system. Its thrust exceeds its 26-gram mass by 40 percent, which is where much of the aerobatic capability comes from. And one of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft.
One of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft
It’s not just thrust that’s a challenge for ornithopters: Control is much more complex as well. Like birds, ornithopters have tails, but unlike birds, they have to rely almost entirely on tail control authority, not having that bird-level of control over fine wing movements. To make an acrobatic level of control possible, the tail control surfaces on this ornithopter are huge—the tail plane area is 35 percent of the wing area. The wings can also provide some assistance in specific circumstances, as by combining tail control inputs with a deliberate stall of the things to allow the ornithopter to execute rapid flips.
With the ability to take off, hover, glide, land softly, maneuver acrobatically, fly quietly, and interact with its environment in a way that’s not (immediately) catastrophic, flapping-wing drones easily offer enough advantages to keep them interesting. Now that ornithopters been shown to be even more efficient than rotorcraft, the researchers plan to focus on autonomy with the goal of moving their robot toward real-world usefulness.
“Efficient flapping wing drone arrests high-speed flight using post-stall soaring,” by Yao-Wei Chin, Jia Ming Kok, Yong-Qiang Zhu, Woei-Leong Chan, Javaan S. Chahl, Boo Cheong Khoo, and Gih-Keong Lau from from Nanyang Technological University in Singapore, National University of Singapore, Defence Science and Technology Group in Canberra, Australia, Qingdao University of Technology in Shandong, China, University of South Australia in Mawson Lakes, and National Chiao Tung University in Hsinchu, Taiwan, was published in Science Robotics. Continue reading
#437741 CaseCrawler Adds Tiny Robotic Legs to ...
Most of us have a fairly rational expectation that if we put our cellphone down somewhere, it will stay in that place until we pick it up again. Normally, this is exactly what you’d want, but there are exceptions, like when you put your phone down in not quite the right spot on a wireless charging pad without noticing, or when you’re lying on the couch and your phone is juuust out of reach no matter how much you stretch.
Roboticists from the Biorobotics Laboratory at Seoul National University in South Korea have solved both of these problems, and many more besides, by developing a cellphone case with little robotic legs, endowing your phone with the ability to skitter around autonomously. And unlike most of the phone-robot hybrids we’ve seen in the past, this one actually does look like a legit case for your phone.
CaseCrawler is much chunkier than a form-fitting case, but it’s not offensively bigger than one of those chunky battery cases. It’s only 24 millimeters thick (excluding the motor housing), and the total weight is just under 82 grams. Keep in mind that this case is in fact an entire robot, and also not at all optimized for being an actual phone case, so it’s easy to imagine how it could get a lot more svelte—for example, it currently includes a small battery that would be unnecessary if it instead tapped into the phone for power.
The technology inside is pretty amazing, since it involves legs that can retract all the way flat while also supporting a significant amount of weight. The legs work sort of like your legs do, in that there’s a knee joint that can only bend one way. To move the robot forward, a linkage (attached to a motor through a gearbox) pushes the leg back against the ground, as the knee joint keeps the leg straight. On the return stroke, the joint allows the leg to fold, making it compliant so that it doesn’t exert force on the ground. The transmission that sends power from the gearbox to the legs is just 1.5-millimeter thick, but this incredibly thin and lightweight mechanical structure is quite powerful. A non-phone case version of the robot, weighing about 23 g, is able to crawl at 21 centimeters per second while carrying a payload of just over 300 g. That’s more than 13 times its body weight.
The researchers plan on exploring how robots like these could make other objects movable that would otherwise not be. They’d also like to add some autonomy, which (at least for the phone case version) could be as straightforward as leveraging the existing sensors on the phone. And as to when you might be able to buy one of these—we’ll keep you updated, but the good news is that it seems to be fundamentally inexpensive enough that it may actually crawl out of the lab one day.
“CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot,” by Jongeun Lee, Gwang-Pil Jung, Sang-Min Baek, Soo-Hwan Chae, Sojung Yim, Woongbae Kim, and Kyu-Jin Cho from Seoul National University, appears in the October issue of IEEE Robotics and Automation Letters.
< Back to IEEE Journal Watch Continue reading