Tag Archives: war
#437816 As Algorithms Take Over More of the ...
Algorithms play an increasingly prominent part in our lives, governing everything from the news we see to the products we buy. As they proliferate, experts say, we need to make sure they don’t collude against us in damaging ways.
Fears of malevolent artificial intelligence plotting humanity’s downfall are a staple of science fiction. But there are plenty of nearer-term situations in which relatively dumb algorithms could do serious harm unintentionally, particularly when they are interlocked in complex networks of relationships.
In the economic sphere a high proportion of decision-making is already being offloaded to machines, and there have been warning signs of where that could lead if we’re not careful. The 2010 “Flash Crash,” where algorithmic traders helped wipe nearly $1 trillion off the stock market in minutes, is a textbook example, and widespread use of automated trading software has been blamed for the increasing fragility of markets.
But another important place where algorithms could undermine our economic system is in price-setting. Competitive markets are essential for the smooth functioning of the capitalist system that underpins Western society, which is why countries like the US have strict anti-trust laws that prevent companies from creating monopolies or colluding to build cartels that artificially inflate prices.
These regulations were built for an era when pricing decisions could always be traced back to a human, though. As self-adapting pricing algorithms increasingly decide the value of products and commodities, those laws are starting to look unfit for purpose, say the authors of a paper in Science.
Using algorithms to quickly adjust prices in a dynamic market is not a new idea—airlines have been using them for decades—but previously these algorithms operated based on rules that were hard-coded into them by programmers.
Today the pricing algorithms that underpin many marketplaces, especially online ones, rely on machine learning instead. After being set an overarching goal like maximizing profit, they develop their own strategies based on experience of the market, often with little human oversight. The most advanced also use forms of AI whose workings are opaque even if humans wanted to peer inside.
In addition, the public nature of online markets means that competitors’ prices are available in real time. It’s well-documented that major retailers like Amazon and Walmart are engaged in a never-ending bot war, using automated software to constantly snoop on their rivals’ pricing and inventory.
This combination of factors sets the stage perfectly for AI-powered pricing algorithms to adopt collusive pricing strategies, say the authors. If given free reign to develop their own strategies, multiple pricing algorithms with real-time access to each other’s prices could quickly learn that cooperating with each other is the best way to maximize profits.
The authors note that researchers have already found evidence that pricing algorithms will spontaneously develop collusive strategies in computer-simulated markets, and a recent study found evidence that suggests pricing algorithms may be colluding in Germany’s retail gasoline market. And that’s a problem, because today’s anti-trust laws are ill-suited to prosecuting this kind of behavior.
Collusion among humans typically involves companies communicating with each other to agree on a strategy that pushes prices above the true market value. They then develop rules to determine how they maintain this markup in a dynamic market that also incorporates the threat of retaliatory pricing to spark a price war if another cartel member tries to undercut the agreed pricing strategy.
Because of the complexity of working out whether specific pricing strategies or prices are the result of collusion, prosecutions have instead relied on communication between companies to establish guilt. That’s a problem because algorithms don’t need to communicate to collude, and as a result there are few legal mechanisms to prosecute this kind of collusion.
That means legal scholars, computer scientists, economists, and policymakers must come together to find new ways to uncover, prohibit, and prosecute the collusive rules that underpin this behavior, say the authors. Key to this will be auditing and testing pricing algorithms, looking for things like retaliatory pricing, price matching, and aggressive responses to price drops but not price rises.
Once collusive pricing rules are uncovered, computer scientists need to come up with ways to constrain algorithms from adopting them without sacrificing their clear efficiency benefits. It could also be helpful to make preventing this kind of collusive behavior the responsibility of the companies deploying them, with stiff penalties for those who don’t keep their algorithms in check.
One problem, though, is that algorithms may evolve strategies that humans would never think of, which could make spotting this behavior tricky. Imbuing courts with the technical knowledge and capacity to investigate this kind of evidence will also prove difficult, but getting to grips with these problems is an even more pressing challenge than it might seem at first.
While anti-competitive pricing algorithms could wreak havoc, there are plenty of other arenas where collusive AI could have even more insidious effects, from military applications to healthcare and insurance. Developing the capacity to predict and prevent AI scheming against us will likely be crucial going forward.
Image Credit: Pexels from Pixabay Continue reading
#437554 Ending the COVID-19 Pandemic
Photo: F.J. Jimenez/Getty Images
The approach of a new year is always a time to take stock and be hopeful. This year, though, reflection and hope are more than de rigueur—they’re rejuvenating. We’re coming off a year in which doctors, engineers, and scientists took on the most dire public threat in decades, and in the new year we’ll see the greatest results of those global efforts. COVID-19 vaccines are just months away, and biomedical testing is being revolutionized.
At IEEE Spectrum we focus on the high-tech solutions: Can artificial intelligence (AI) be used to diagnose COVID-19 using cough recordings? Can mathematical modeling determine whether preventive measures against COVID-19 work? Can big data and AI provide accurate pandemic forecasting?
Consider our story “AI Recognizes COVID-19 in the Sound of a Cough,” reported by Megan Scudellari in our Human OS blog. Using a cellphone-recorded cough, machine-learning models can now detect coronavirus with 90 percent accuracy, even in people with no symptoms. It’s a remarkable research milestone. This AI model sifts through hundreds of factors to distinguish the COVID-19 cough from those of bronchitis, whooping cough, and asthma.
But while such high-tech triumphs give us hope, the no-tech solutions are mostly what we have to work with. Soon, as our Numbers Don’t Lie columnist, Vaclav Smil, pointed out in a recent email, we will have near-instantaneous home testing, and we will have an ability to use big data to crunch every move and every outbreak. But we are nowhere near that yet. So let’s use, as he says, some old-fashioned kindergarten epidemiology, the no-tech measures, while we work to get there:
Masks: Wear them. If we all did so, we could cut transmission by two-thirds, perhaps even 80 percent.
Hands: Wash them.
Social distancing: If we could all stay home for two weeks, we could see enormous declines in COVID-19 transmission.
These are all time-tested solutions, proven effective ages ago in countless outbreaks of diseases including typhoid and cholera. They’re inexpensive and easy to prescribe, and the regimens are easy to follow.
The conflict between public health and individual rights and privacy, however, is less easy to resolve. Even during the pandemic of 1918–19, there was widespread resistance to mask wearing and social distancing. Fifty million people died—675,000 in the United States alone. Today, we are up to 240,000 deaths in the United States, and the end is not in sight. Antiflu measures were framed in 1918 as a way to protect the troops fighting in World War I, and people who refused to wear masks were called out as “dangerous slackers.” There was a world war, and yet it was still hard to convince people of the need for even such simple measures.
Personally, I have found the resistance to these easy fixes startling. I wouldn’t want maskless, gloveless doctors taking me through a surgical procedure. Or waltzing in from lunch without washing their hands. I’m sure you wouldn’t, either.
Science-based medicine has been one of the world’s greatest and most fundamental advances. In recent years, it has been turbocharged by breakthroughs in genetics technologies, advanced materials, high-tech diagnostics, and implants and other electronics-based interventions. Such leaps have already saved untold lives, but there’s much more to be done. And there will be many more pandemics ahead for humanity.
< Back to IEEE COVID-19 Resources Continue reading
#437491 3.2 Billion Images and 720,000 Hours of ...
Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.
Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”
The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.
A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours
In the video, Biden says “Hello, Minnesota.”
The event did indeed happen in MN — signs on stage read MN
But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v
— Donie O'Sullivan (@donie) November 1, 2020
If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?
While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.
Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.
For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.
Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.
Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.
Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr
— Dope Historic Pics (@dopehistoricpic) December 20, 2013
This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.
In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.
“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.
This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5
— Willie's Reserve (@WilliesReserve) January 21, 2019
Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.
Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.
You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a
— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020
Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.
Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh
— EVC Music (@EVCMusicUK) January 6, 2020
Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.
Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.
These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY
Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.
We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.
Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP
But what about edits that only alter pixel values such as color, saturation, or contrast?
One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”
Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).
Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.
Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:
Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.
Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.
Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”
Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.
Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.
If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.
The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:
Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?
Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Simon Steinberger from Pixabay Continue reading