Tag Archives: wall

#439053 Bipedal Robots Are Learning To Move With ...

Most humans are bipeds, but even the best of us are really only bipeds until things get tricky. While our legs may be our primary mobility system, there are lots of situations in which we leverage our arms as well, either passively to keep balance or actively when we put out a hand to steady ourselves on a nearby object. And despite how unstable bipedal robots tend to be, using anything besides legs for mobility has been a challenge in both software and hardware, a significant limitation in highly unstructured environments.

Roboticists from TUM in Germany (with support from the German Research Foundation) have recently given their humanoid robot LOLA some major upgrades to make this kind of multi-contact locomotion possible. While it’s still in the early stages, it’s already some of the most human-like bipedal locomotion we’ve seen.

It’s certainly possible for bipedal robots to walk over challenging terrain without using limbs for support, but I’m sure you can think of lots of times where using your arms to assist with your own bipedal mobility was a requirement. It’s not a requirement because your leg strength or coordination or sense of balance is bad, necessarily. It’s just that sometimes, you might find yourself walking across something that’s highly unstable or in a situation where the consequences of a stumble are exceptionally high. And it may not even matter how much sensing you do beforehand, and how careful you are with your footstep planning: there are limits to how much you can know about your environment beforehand, and that can result in having a really bad time of it. This is why using multi-contact locomotion, whether it’s planned in advance or not, is a useful skill for humans, and should be for robots, too.

As the video notes (and props for being explicit up front about it), this isn’t yet fully autonomous behavior, with foot positions and arm contact points set by hand in advance. But it’s not much of a stretch to see how everything could be done autonomously, since one of the really hard parts (using multiple contact points to dynamically balance a moving robot) is being done onboard and in real time.

Getting LOLA to be able to do this required a major overhaul in hardware as well as software. And Philipp Seiwald, who works with LOLA at TUM, was able to tell us more about it.

IEEE Spectrum: Can you summarize the changes to LOLA’s hardware that are required for multi-contact locomotion?

Philipp Seiwald: The original version of LOLA has been designed for fast biped walking. Although it had two arms, they were not meant to get into contact with the environment but rather to compensate for the dynamic effects of the feet during fast walking. Also, the torso had a relatively simple design that was fine for its original purpose; however, it was not conceived to withstand the high loads coming from the hands during multi-contact maneuvers. Thus, we redesigned the complete upper body of LOLA from scratch. Starting from the pelvis, the strength and stiffness of the torso have been increased. We used the finite element method to optimize critical parts to obtain maximum strength at minimum weight. Moreover, we added additional degrees of freedom to the arms to increase the hands' reachable workspace. The kinematic topology of the arms, i.e., the arrangement of joints and link lengths, has been obtained from an optimization that takes typical multi-contact scenarios into account.

Why is this an important problem for bipedal humanoid robots?

Maintaining balance during locomotion can be considered the primary goal of legged robots. Naturally, this task is more challenging for bipeds when compared to robots with four or even more legs. Although current high-end prototypes show impressive progress, humanoid robots still do not have the robustness and versatility they need for most real-world applications. With our research, we try to contribute to this field and help to push the limits further. Recently, we showed our latest work on walking over uneven terrain without multi-contact support. Although the robustness is already high, there still exist scenarios, such as walking on loose objects, where the robot's stabilization fails when using only foot contacts. The use of additional hand-environment support during this (comparatively) fast walking allows a further significant increase in robustness, i.e., the robot's capability to compensate disturbances, modeling errors, or inaccurate sensor input. Besides stabilization on uneven terrain, multi-contact locomotion also enables more complex motions, e.g., stepping over a tall obstacle or toe-only contacts, as shown in our latest multi-contact video.

How can LOLA decide whether a surface is suitable for multi-contact locomotion?

LOLA’s visual perception system is currently developed by our project partners from the Chair for Computer Aided Medical Procedures & Augmented Reality at the TUM. This system relies on a novel semantic Simultaneous Localization and Mapping (SLAM) pipeline that can robustly extract the scene's semantic components (like floor, walls, and objects therein) by merging multiple observations from different viewpoints and by inferring therefrom the underlying scene graph. This provides a reliable estimate of which scene parts can be used to support the locomotion, based on the assumption that certain structural elements such as walls are fixed, while chairs, for example, are not.

Also, the team plans to develop a specific dataset with annotations further describing the attributes of the object (such as roughness of the surface or its softness) and that will be used to master multi-contact locomotion in even more complex scenes. As of today, the vision and navigation system is not finished yet; thus, in our latest video, we used pre-defined footholds and contact points for the hands. However, within our collaboration, we are working towards a fully integrated and autonomous system.

Is LOLA capable of both proactive and reactive multi-contact locomotion?

The software framework of LOLA has a hierarchical structure. On the highest level, the vision system generates an environment model and estimates the 6D-pose of the robot in the scene. The walking pattern generator then uses this information to plan a dynamically feasible future motion that will lead LOLA to a target position defined by the user. On a lower level, the stabilization module modifies this plan to compensate for model errors or any kind of disturbance and keep overall balance. So our approach currently focuses on proactive multi-contact locomotion. However, we also plan to work on a more reactive behavior such that additional hand support can also be triggered by an unexpected disturbance instead of being planned in advance.

What are some examples of unique capabilities that you are working towards with LOLA?

One of the main goals for the research with LOLA remains fast, autonomous, and robust locomotion on complex, uneven terrain. We aim to reach a walking speed similar to humans. Currently, LOLA can do multi-contact locomotion and cross uneven terrain at a speed of 1.8 km/h, which is comparably fast for a biped robot but still slow for a human. On flat ground, LOLA's high-end hardware allows it to walk at a relatively high maximum speed of 3.38 km/h.

Fully autonomous multi-contact locomotion for a life-sized humanoid robot is a tough task. As algorithms get more complex, computation time increases, which often results in offline motion planning methods. For LOLA, we restrict ourselves to gaited multi-contact locomotion, which means that we try to preserve the core characteristics of bipedal gait and use the arms only for assistance. This allows us to use simplified models of the robot which lead to very efficient algorithms running in real-time and fully onboard.

A long-term scientific goal with LOLA is to understand essential components and control policies of human walking. LOLA's leg kinematics is relatively similar to the human body. Together with scientists from kinesiology, we try to identify similarities and differences between observed human walking and LOLA’s “engineered” walking gait. We hope this research leads, on the one hand, to new ideas for the control of bipeds, and on the other hand, shows via experiments on bipeds if biomechanical models for the human gait are correctly understood. For a comparison of control policies on uneven terrain, LOLA must be able to walk at comparable speeds, which also motivates our research on fast and robust walking.

While it makes sense why the researchers are using LOLA’s arms primarily to assist with a conventional biped gait, looking ahead a bit it’s interesting to think about how robots that we typically consider to be bipeds could potentially leverage their limbs for mobility in decidedly non-human ways.

We’re used to legged robots being one particular morphology, I guess because associating them with either humans or dogs or whatever is just a comfortable way to do it, but there’s no particular reason why a robot with four limbs has to choose between being a quadruped and being a biped with arms, or some hybrid between the two, depending on what its task is. The research being done with LOLA could be a step in that direction, and maybe a hand on the wall in that direction, too. Continue reading

Posted in Human Robots

#437992 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
This Chinese Lab Is Aiming for Big AI Breakthroughs
Will Knight | Wired
“China produces as many artificial intelligence researchers as the US, but it lags in key fields like machine learning. The government hopes to make up ground. …It set AI researchers the goal of making ‘fundamental breakthroughs by 2025’ and called for the country to be ‘the world’s primary innovation center by 2030.’ BAAI opened a year later, in Zhongguancun, a neighborhood of Beijing designed to replicate US innovation hubs such as Boston and Silicon Valley.”

ENVIRONMENT
What Elon Musk’s $100 Million Carbon Capture Prize Could Mean
James Temple | MIT Technology Review
“[Elon Musk] announced on Twitter that he plans to give away $100 million of [his $180 billion net worth] as a prize for the ‘best carbon capture technology.’ …Another $100 million could certainly help whatever venture, or ventures, clinch Musk’s prize. But it’s a tiny fraction of his wealth and will also only go so far. …Money aside, however, one thing Musk has a particular knack for is generating attention. And this is a space in need of it.”

HEALTH
Synthetic Cornea Helped a Legally Blind Man Regain His Sight
Steve Dent | Engadget
“While the implant doesn’t contain any electronics, it could help more people than any robotic eye. ‘After years of hard work, seeing a colleague implant the CorNeat KPro with ease and witnessing a fellow human being regain his sight the following day was electrifying and emotionally moving, there were a lot of tears in the room,’ said CorNeat Vision co-founder Dr. Gilad Litvin.”

BIOTECH
MIT Develops Method for Lab-Grown Plants That May Eventually Lead to Alternatives to Forestry and Farming
Darrell Etherington | TechCrunch
“If the work of these researchers can eventually be used to create a way to produce lab-grown wood for use in construction and fabrication in a way that’s scalable and efficient, then there’s tremendous potential in terms of reducing the impact on forestry globally. Eventually, the team even theorizes you could coax the growth of plant-based materials into specific target shapes, so you could also do some of the manufacturing in the lab, by growing a wood table directly for instance.”

AUTOMATION
FAA Approves First Fully Automated Commercial Drone Flights
Andy Pasztor and Katy Stech Ferek | The Wall Street Journal
“US aviation regulators have approved the first fully automated commercial drone flights, granting a small Massachusetts-based company permission to operate drones without hands-on piloting or direct observation by human controllers or observers. …The company’s Scout drones operate under predetermined flight programs and use acoustic technology to detect and avoid drones, birds, and other obstacles.”

SPACE
China’s Surging Private Space Industry Is Out to Challenge the US
Neel V. Patel | MIT Technology Review
“[The Ceres-1] was a commercial rocket—only the second from a Chinese company ever to go into space. And the launch happened less than three years after the company was founded. The achievement is a milestone for China’s fledgling—but rapidly growing—private space industry, an increasingly critical part of the country’s quest to dethrone the US as the world’s preeminent space power.”

CRYPTOCURRENCY
Janet Yellen Will Consider Limiting Use of Cryptocurrency
Timothy B. Lee | Ars Technica
“Cryptocurrencies could come under renewed regulatory scrutiny over the next four years if Janet Yellen, Joe Biden’s pick to lead the Treasury Department, gets her way. During Yellen’s Tuesday confirmation hearing before the Senate Finance Committee, Sen. Maggie Hassan (D-N.H.) asked Yellen about the use of cryptocurrency by terrorists and other criminals. ‘Cryptocurrencies are a particular concern,’ Yellen responded. ‘I think many are used—at least in a transactions sense—mainly for illicit financing.’i”

SCIENCE
Secret Ingredient Found to Power Supernovas
Thomas Lewton | Quanta
“…Only in the last few years, with the growth of supercomputers, have theorists had enough computing power to model massive stars with the complexity needed to achieve explosions. …These new simulations are giving researchers a better understanding of exactly how supernovas have shaped the universe we see today.”

Image Credit: Ricardo Gomez Angel / Unsplash Continue reading

Posted in Human Robots

#437689 GITAI Sending Autonomous Robot to Space ...

We’ve been keeping a close watch on GITAI since early last year—what caught our interest initially is the history of the company, which includes a bunch of folks who started in the JSK Lab at the University of Tokyo, won the DARPA Robotics Challenge Trials as SCHAFT, got swallowed by Google, narrowly avoided being swallowed by SoftBank, and are now designing robots that can work in space.

The GITAI YouTube channel has kept us more to less up to date on their progress so far, and GITAI has recently announced the next step in this effort: The deployment of one of their robots on board the International Space Station in 2021.

Photo: GITAI

GITAI’s S1 is a task-specific 8-degrees-of-freedom arm with an integrated sensing and computing system and 1-meter reach.

GITAI has been working on a variety of robots for space operations, the most sophisticated of which is a humanoid torso called G1, which is controlled through an immersive telepresence system. What will be launching into space next year is a more task-specific system called the S1, which is an 8-degrees-of-freedom arm with an integrated sensing and computing system that can be wall-mounted and has a 1-meter reach.

The S1 will be living on board a commercially funded, pressurized airlock-extension module called Bishop, developed by NanoRacks. Mounted on the inside of the Bishop module, the S1 will have access to a task board and a small assembly area, where it will demonstrate common crew intra-vehicular activity, or IVA—tasks like flipping switches, turning knobs, and managing cables. It’ll also do some in-space assembly, or ISA, attaching panels to create a solar array.

Here’s a demonstration of some task board activities, conducted on Earth in a mockup of Bishop:

GITAI says that “all operations conducted by the S1 GITAI robotic arm will be autonomous, followed by some teleoperations from Nanoracks’ in-house mission control.” This is interesting, because from what we’ve seen until now, GITAI has had a heavy emphasis on telepresence, with a human in the loop to get stuff done. As GITAI’s founder and CEO Sho Nakanose commented to us a year ago, “Telepresence robots have far better performance and can be made practical much quicker than autonomous robots, so first we are working on making telepresence robots practical.”

So what’s changed? “GITAI has been concentrating on teleoperations to demonstrate the dexterity of our robot, but now it’s time to show our capabilities to do the same this time with autonomy,” Nakanose told us last week. “In an environment with minimum communication latency, it would be preferable to operate a robot more with teleoperations to enhance the capability of the robot, since with the current technology level of AI, what a robot can do autonomously is very limited. However, in an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”

“In an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”
—Sho Nakanose, GITAI founder and CEO

Nakanose says that this mission will help GITAI to “acquire the skills, know-how, and experience necessary to prepare a robot to be ISS compatible, prov[ing] the maturity of our technology in the microgravity environment.” Success would mean conducting both IVA and ISA experiments as planned (autonomous and teleop for IVA, fully autonomous for ISA), which would be pretty awesome, but we’re told that GITAI has already received a research and development order for space robots from a private space company, and Nakanose expects that “by the mid-2020s, we will be able to show GITAI's robots working in space on an actual mission.”

NanoRacks is schedule to launch the Bishop module on SpaceX CRS-21 in November. The S1 will be launched separately in 2021, and a NASA astronaut will install the robot and then leave it alone to let it start demonstrating how work in space can be made both safer and cheaper once the humans have gotten out of the way. Continue reading

Posted in Human Robots

#437639 Boston Dynamics’ Spot Is Helping ...

In terms of places where you absolutely want a robot to go instead of you, what remains of the utterly destroyed Chernobyl Reactor 4 should be very near the top of your list. The reactor, which suffered a catastrophic meltdown in 1986, has been covered up in almost every way possible in an effort to keep its nuclear core contained. But eventually, that nuclear material is going to have to be dealt with somehow, and in order to do that, it’s important to understand which bits of it are just really bad, and which bits are the actual worst. And this is where Spot is stepping in to help.

The big open space that Spot is walking through is right next to what’s left of Reactor 4. Within six months of the disaster, Reactor 4 was covered in a sarcophagus made of concrete and steel to try and keep all the nasty nuclear fuel from leaking out more than it already had, and it still contains “30 tons of highly contaminated dust, 16 tons of uranium and plutonium, and 200 tons of radioactive lava.” Oof. Over the next 10 years, the sarcophagus slowly deteriorated, and despite the addition of that gigantic network of steel support beams that you can see in the video, in the late 1990s it was decided to erect an enormous building over the entire mess to try and stabilize it for as long as possible.

Reactor 4 is now snugly inside the massive New Safe Confinement (NSC) structure, and the idea is that eventually, the structure will allow for the safe disassembly of what’s left of the reactor, although nobody is quite sure how to do that. This is all just to say that the area inside of the containment structure offers a lot of good opportunities for robots to take over from humans.

This particular Spot is owned by the U.K. Atomic Energy Authority, and was packed off to Russia with the assistance of the Robotics and Artificial Intelligence in Nuclear (RAIN) initiative and the National Centre for Nuclear Robotics. Dr. Dave Megson-Smith, who is a researcher at the University of Bristol, in the U.K., and part of the Hot Robotics Facility at the National Nuclear User Facility, was one of the scientists lucky enough to accompany Spot on its adventure. Megson-Smith specializes in sensor development, and he equipped Spot with a collimated radiation sensor in addition to its mapping payload. “We actually built a map of the radiation coming out of the front wall of Chernobyl power plant as we were in there with it,” Megson-Smith told us, and was able to share this picture, which shows a map of gamma photon count rate:

Image: University of Bristol

Researchers equipped Spot with a collimated radiation sensor and use one of the data readings (gamma photon count rate) to create a map of the radiation coming out of the front wall of the Chernobyl power plant.

So what’s the reason you’d want to use a very expensive legged robot to wander around what looks like a very flat and robot friendly floor? As it turns out, the floor is very dusty in there, and a priority inside the NSC is to keep dust down as much as possible, since the dust is radioactive and gets on everything and is consequently the easiest way for radioactivity to escape the NSC. “You want to minimize picking up material, so we consider the total contact surface area,” says Megson-Smith. “If you use a legged system rather than a wheeled or tracked system, you have a much smaller footprint and you disturb the environment a lot less.” While it’s nice that Spot is nimble and can climb stairs and stuff, tracked vehicles can do that as well, so in this case, the primary driving factor of choosing a robot to work inside Chernobyl is minimizing those contact points.

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker”

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker” able to work in medium level contaminated environments.” As far as more dangerous areas go, there’s a lot of uncertainty about what Spot is actually capable of, according to Megson-Smith. “What you think the problems are, and what the industry thinks the problems are, are subtly different things.

We were thinking that we’d have to make robots incredibly radiation proof to go into these contaminated environments, but they said, “can you just give us a system that we can send into places where humans already can go, but where we just don’t want to send humans.” Making robots incredibly radiation proof is challenging, and without extensive testing and ruggedizing, failures can be frequent, as many robots discovered at Fukushima. Indeed, Megson-Smith that in Fukushima there’s a particular section that’s known as a “robot graveyard” where robots just go to die, and they’ve had to up their standards again and again to keep the robots from failing. “So the thing they’re worried about with Spot is, what is its tolerance? What components will fail, and what can we do to harden it?” he says. “We’re approaching Boston Dynamics at the moment to see if they’ll work with us to address some of those questions.

There’s been a small amount of testing of how robots fair under harsh radiation, Megson-Smith told us, including (relatively recently) a KUKA LBR800 arm, which “stopped operating after a large radiation dose of 164.55(±1.09) Gy to its end effector, and the component causing the failure was an optical encoder.” And in case you’re wondering how much radiation that is, a 1 to 2 Gy dose to the entire body gets you acute radiation sickness and possibly death, while 8 Gy is usually just straight-up death. The goal here is not to kill robots (I mean, it sort of is), but as Megson-Smith says, “if we can work out what the weak points are in a robotic system, can we address those, can we redesign those, or at least understand when they might start to fail?” Now all he has to do is convince Boston Dynamics to send them a Spot that they can zap until it keels over.

The goal for Spot in the short term is fully autonomous radiation mapping, which seems very possible. It’ll also get tested with a wider range of sensor packages, and (happily for the robot) this will all take place safely back at home in the U.K. As far as Chernobyl is concerned, robots will likely have a substantial role to play in the near future. “Ultimately, Chernobyl has to be taken apart and decommissioned. That’s the long-term plan for the facility. To do that, you first need to understand everything, which is where we come in with our sensor systems and robotic platforms,” Megson-Smith tells us. “Since there are entire swathes of the Chernobyl nuclear plant where people can’t go in, we’d need robots like Spot to do those environmental characterizations.” Continue reading

Posted in Human Robots

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots