Tag Archives: Visual

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots

#438731 Video Friday: Perseverance Lands on Mars

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Hmm, did anything interesting happen in robotics yesterday week?

Obviously, we're going to have tons more on the Mars Rover and Mars Helicopter over the next days, weeks, months, years, and (if JPL's track record has anything to say about it) decades. Meantime, here's what's going to happen over the next day or two:

[ Mars 2020 ]

PLEN hopes you had a happy Valentine's Day!

[ PLEN ]

Unitree dressed up a whole bunch of Laikago quadrupeds to take part in the 2021 Spring Festival Gala in China.

[ Unitree ]

Thanks Xingxing!

Marine iguanas compete for the best nesting sites on the Galapagos Islands. Meanwhile RoboSpy Iguana gets involved in a snot sneezing competition after the marine iguanas return from the sea.

[ Spy in the Wild ]

Tails, it turns out, are useful for almost everything.

[ DART Lab ]

Partnered with MD-TEC, this video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.

[ Extend Robotics ]

Fotokite is a safe, practical way to do local surveillance with a drone.

I just wish they still had a consumer version 🙁

[ Fotokite ]

How to confuse fish.

[ Harvard ]

Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.

[ Army ]

Flexiv's new RIZON 10 robot hopes you had a happy Valentine's Day!

[ Flexiv ]

Thanks Yunfan!

An inchworm-inspired crawling robot (iCrawl) is a 5 DOF robot with two legs; each with an electromagnetic foot to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The robot has the ability to crawl on the metal pipes of various curvatures in horizontal and vertical directions. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.

[ Paper ]

Thanks Poramate!

A short film about Robot Wars from Blender Magazine in 1995.

[ YouTube ]

While modern cameras provide machines with a very well-developed sense of vision, robots still lack such a comprehensive solution for their sense of touch. The talk will present examples of why the sense of touch can prove crucial for a wide range of robotic applications, and a tech demo will introduce a novel sensing technology targeting the next generation of soft robotic skins. The prototype of the tactile sensor developed at ETH Zurich exploits the advances in camera technology to reconstruct the forces applied to a soft membrane. This technology has the potential to revolutionize robotic manipulation, human-robot interaction, and prosthetics.

[ ETHZ ]

Thanks Markus!

Quadrupedal robotics has reached a level of performance and maturity that enables some of the most advanced real-world applications with autonomous mobile robots. Driven by excellent research in academia and industry all around the world, a growing number of platforms with different skills target different applications and markets. We have invited a selection of experts with long-standing experience in this vibrant research area

[ IFRR ]

Thanks Fan!

Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. This panel will discuss how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.

[ IFRR ]

At Skydio, we ship autonomous robots that are flown at scale in complex, unknown environments every day. We’ve invested six years of R&D into handling extreme visual scenarios not typically considered by academia nor encountered by cars, ground robots, or AR applications. Drones are commonly in scenes with few or no semantic priors on the environment and must deftly navigate thin objects, extreme lighting, camera artifacts, motion blur, textureless surfaces, vibrations, dirt, smudges, and fog. These challenges are daunting for classical vision, because photometric signals are simply inconsistent. And yet, there is no ground truth for direct supervision of deep networks. We’ll take a detailed look at these issues and how we’ve tackled them to push the state of the art in visual inertial navigation, obstacle avoidance, rapid trajectory planning. We will also cover the new capabilities on top of our core navigation engine to autonomously map complex scenes and capture all surfaces, by performing real-time 3D reconstruction across multiple flights.

[ UPenn ] Continue reading

Posted in Human Robots

#438553 New Drone Software Handles Motor ...

Good as some drones are becoming at obstacle avoidance, accidents do still happen. And as far as robots go, drones are very much on the fragile side of things. Any sort of significant contact between a drone and almost anything else usually results in a catastrophic, out-of-control spin followed by a death plunge to the ground. Bad times. Bad, expensive times.

A few years ago, we saw some interesting research into software that can keep the most common drone form factor, the quadrotor, aloft and controllable even after the failure of one motor. The big caveat to that software was that it relied on GPS for state estimation, meaning that without a GPS signal, the drone is unable to get the information it needs to keep itself under control. In a paper recently accepted to RA-L, researchers at the University of Zurich report that they have developed a vision-based system that brings state estimation completely on-board. The upshot: potentially any drone with some software and a camera can keep itself safe even under the most challenging conditions.

A few years ago, we wrote about first author Sihao Sun’s work on high speed controlled flight of a quadrotor with a non-functional motor. But that innovation relied on an external motion capture system. Since then, Sun has moved from Tu Delft to Davide Scaramuzza’s lab at UZH, and it looks like he’s been able to combine his work on controlled spinning flight with the Robotics and Perception Group’s expertise in vision. Now, a downward-facing camera is all it takes for a spinning drone to remain stable and controllable:

Remember, this software isn’t just about guarding against motor failure. Drone motors themselves don’t just up and fail all that often, either with respect to their software or hardware. But they do represent the most likely point of failure for any drone, usually because when you run into something, what ultimately causes your drone to crash is damage to a motor or a propeller that causes loss of control.

The reason that earlier solutions relied on GPS was because the spinning drone needs a method of state estimation—that is, in order to be closed-loop controllable, the drone needs to have a reasonable understanding of what its position is and how that position is changing over time. GPS is an easy way to take care of this, but GPS is also an external system that doesn’t work everywhere. Having a state estimation system that’s completely internal to the drone itself is much more fail safe, and Sun got his onboard system to work through visual feature tracking with a downward-facing camera, even as the drone is spinning at over 20 rad/s.

While the system works well enough with a regular downward-facing camera—something that many consumer drones are equipped with for stabilization purposes—replacing it with an event camera (you remember event cameras, right?) makes the performance even better, especially in low light.

For more details on this, including what you’re supposed to do with a rapidly spinning partially disabled quadrotor (as well as what it’ll take to make this a standard feature on consumer hardware), we spoke with Sihao Sun via email.

IEEE Spectrum: what usually happens when a drone spinning this fast lands? Is there any way to do it safely?

Sihao Sun: Our experience shows that we can safely land the drone while it is spinning. When the range sensor measurements are lower than a threshold (around 10 cm, indicating that the drone is close to the ground), we switch off the rotors. During the landing procedure, despite the fast spinning motion, the thrust direction oscillates around the gravity vector, thus the drone touches the ground with its legs without damaging other components.

Can your system handle more than one motor failure?

Yes, the system can also handle the failure of two opposing rotors. However, if two adjacent rotors or more than two rotors fail, our method cannot save the quadrotor. Some research has shown that it is possible to control a quadrotor with only one remaining rotor. But the drone requires a very special inertial property, which is hard to satisfy in real applications.

How different is your system's performance from a similar system that relies on GPS, in a favorable environment?

In a favorable environment, our system outperforms those relying on GPS signals because it obtains better position estimates. Since a damaged quadrotor spins fast, the accelerometer readings are largely affected by centrifugal forces. When the GPS signal is lost or degraded, a drone relying on GPS needs to integrate these biased accelerometer measurements for position estimation, leading to large position estimation errors. Feeding these erroneous estimates to the flight controller can easily crash the drone.

When you say that your solution requires “only onboard sensors and computation,” are those requirements specialized, or would they be generally compatible with the current generation of recreational and commercial quadrotors?

We use an NVIDIA Jetson TX2 to run our solution, which includes two parts: the control algorithm and the vision-based state estimation algorithm. The control algorithm is lightweight; thus, we believe that it is compatible with the current generation of quadrotors. On the other hand, the vision-based state estimation requires relatively more computational resources, which may not be affordable for cheap recreational platforms. But this is not an issue for commercial quadrotors because many of them have more powerful processors than a TX2.

What else can event cameras be used for, in recreational or commercial applications?

Many drone applications can benefit from event cameras, especially those in high-speed or low-light conditions, such as autonomous drone racing, cave exploration, drone delivery during night time, etc. Event cameras also consume very little power, which is a significant advantage for energy-critical missions, such as planetary aerial vehicles for Mars explorations. Regarding space applications, we are currently collaborating with JPL to explore the use of event cameras to address the key limitations of standard cameras for the next Mars helicopter.

[ UZH RPG ] Continue reading

Posted in Human Robots

#438014 Meet Blueswarm, a Smart School of ...

Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.

Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.

The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.

“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”

The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.

Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.

“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.

In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.

“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”

Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.

“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.

The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.

“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading

Posted in Human Robots

#437990 Video Friday: Record-Breaking Drone Show ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.

The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.

[ Bio-Inspired and Medical Robotics Lab ]

How TRI trains its robots.

[ TRI ]

The only thing more satisfying than one SCARA robot is two SCARA robots working together.

[ Fanuc ]

I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.

[ Shinoda & Makino Lab ]

Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.

[ Nature ]

A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).

[ Xinhua ]

Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.

[ University of Michigan ] via [ Fetch Robotics ]

This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.

And here's a video report on the SubT Urban Beta Course performance:

[ CERBERUS ]

Congrats to Energy Robotics on 2 million euros in seed funding!

[ Energy Robotics ]

Thanks Stefan!

In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.

HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.

[ HEBI Robotics ]

Thanks Hardik!

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.

[ Paper ]

Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.

[ Science of Soft Robots ]

A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.

[ Clearpath Robotics ]

Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.

[ Northeastern ]

Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.

[ Microsoft Research ]

A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.

[ COSTAR ] Continue reading

Posted in Human Robots