Tag Archives: Visual
#434786 AI Performed Like a Human on a Gestalt ...
Dr. Been Kim wants to rip open the black box of deep learning.
A senior researcher at Google Brain, Kim specializes in a sort of AI psychology. Like cognitive psychologists before her, she develops various ways to probe the alien minds of artificial neural networks (ANNs), digging into their gory details to better understand the models and their responses to inputs.
The more interpretable ANNs are, the reasoning goes, the easier it is to reveal potential flaws in their reasoning. And if we understand when or why our systems choke, we’ll know when not to use them—a foundation for building responsible AI.
There are already several ways to tap into ANN reasoning, but Kim’s inspiration for unraveling the AI black box came from an entirely different field: cognitive psychology. The field aims to discover fundamental rules of how the human mind—essentially also a tantalizing black box—operates, Kim wrote with her colleagues.
In a new paper uploaded to the pre-publication server arXiv, the team described a way to essentially perform a human cognitive test on ANNs. The test probes how we automatically complete gaps in what we see, so that they form entire objects—for example, perceiving a circle from a bunch of loose dots arranged along a clock face. Psychologist dub this the “law of completion,” a highly influential idea that led to explanations of how our minds generalize data into concepts.
Because deep neural networks in machine vision loosely mimic the structure and connections of the visual cortex, the authors naturally asked: do ANNs also exhibit the law of completion? And what does that tell us about how an AI thinks?
Enter the Germans
The law of completion is part of a series of ideas from Gestalt psychology. Back in the 1920s, long before the advent of modern neuroscience, a group of German experimental psychologists asked: in this chaotic, flashy, unpredictable world, how do we piece together input in a way that leads to meaningful perceptions?
The result is a group of principles known together as the Gestalt effect: that the mind self-organizes to form a global whole. In the more famous words of Gestalt psychologist Kurt Koffka, our perception forms a whole that’s “something else than the sum of its parts.” Not greater than; just different.
Although the theory has its critics, subsequent studies in humans and animals suggest that the law of completion happens on both the cognitive and neuroanatomical level.
Take a look at the drawing below. You immediately “see” a shape that’s actually the negative: a triangle or a square (A and B). Or you further perceive a 3D ball (C), or a snake-like squiggle (D). Your mind fills in blank spots, so that the final perception is more than just the black shapes you’re explicitly given.
Image Credit: Wikimedia Commons contributors, the free media repository.
Neuroscientists now think that the effect comes from how our visual system processes information. Arranged in multiple layers and columns, lower-level neurons—those first to wrangle the data—tend to extract simpler features such as lines or angles. In Gestalt speak, they “see” the parts.
Then, layer by layer, perception becomes more abstract, until higher levels of the visual system directly interpret faces or objects—or things that don’t really exist. That is, the “whole” emerges.
The Experiment Setup
Inspired by these classical experiments, Kim and team developed a protocol to test the Gestalt effect on feed-forward ANNs: one simple, the other, dubbed the “Inception V3,” far more complex and widely used in the machine vision community.
The main idea is similar to the triangle drawings above. First, the team generated three datasets: one set shows complete, ordinary triangles. The second—the “Illusory” set, shows triangles with the edges removed but the corners intact. Thanks to the Gestalt effect, to us humans these generally still look like triangles. The third set also only shows incomplete triangle corners. But here, the corners are randomly rotated so that we can no longer imagine a line connecting them—hence, no more triangle.
To generate a dataset large enough to tease out small effects, the authors changed the background color, image rotation, and other aspects of the dataset. In all, they produced nearly 1,000 images to test their ANNs on.
“At a high level, we compare an ANN’s activation similarities between the three sets of stimuli,” the authors explained. The process is two steps: first, train the AI on complete triangles. Second, test them on the datasets. If the response is more similar between the illusory set and the complete triangle—rather than the randomly rotated set—it should suggest a sort of Gestalt closure effect in the network.
Machine Gestalt
Right off the bat, the team got their answer: yes, ANNs do seem to exhibit the law of closure.
When trained on natural images, the networks better classified the illusory set as triangles than those with randomized connection weights or networks trained on white noise.
When the team dug into the “why,” things got more interesting. The ability to complete an image correlated with the network’s ability to generalize.
Humans subconsciously do this constantly: anything with a handle made out of ceramic, regardless of shape, could easily be a mug. ANNs still struggle to grasp common features—clues that immediately tells us “hey, that’s a mug!” But when they do, it sometimes allows the networks to better generalize.
“What we observe here is that a network that is able to generalize exhibits…more of the closure effect [emphasis theirs], hinting that the closure effect reflects something beyond simply learning features,” the team wrote.
What’s more, remarkably similar to the visual cortex, “higher” levels of the ANNs showed more of the closure effect than lower layers, and—perhaps unsurprisingly—the more layers a network had, the more it exhibited the closure effect.
As the networks learned, their ability to map out objects from fragments also improved. When the team messed around with the brightness and contrast of the images, the AI still learned to see the forest from the trees.
“Our findings suggest that neural networks trained with natural images do exhibit closure,” the team concluded.
AI Psychology
That’s not to say that ANNs recapitulate the human brain. As Google’s Deep Dream, an effort to coax AIs into spilling what they’re perceiving, clearly demonstrates, machine vision sees some truly weird stuff.
In contrast, because they’re modeled after the human visual cortex, perhaps it’s not all that surprising that these networks also exhibit higher-level properties inherent to how we process information.
But to Kim and her colleagues, that’s exactly the point.
“The field of psychology has developed useful tools and insights to study human brains– tools that we may be able to borrow to analyze artificial neural networks,” they wrote.
By tweaking these tools to better analyze machine minds, the authors were able to gain insight on how similarly or differently they see the world from us. And that’s the crux: the point isn’t to say that ANNs perceive the world sort of, kind of, maybe similar to humans. It’s to tap into a wealth of cognitive psychology tools, established over decades using human minds, to probe that of ANNs.
“The work here is just one step along a much longer path,” the authors conclude.
“Understanding where humans and neural networks differ will be helpful for research on interpretability by enlightening the fundamental differences between the two interesting species.”
Image Credit: Popova Alena / Shutterstock.com Continue reading
#434569 From Parkour to Surgery, Here Are the ...
The robot revolution may not be here quite yet, but our mechanical cousins have made some serious strides. And now some of the leading experts in the field have provided a rundown of what they see as the 10 most exciting recent developments.
Compiled by the editors of the journal Science Robotics, the list includes some of the most impressive original research and innovative commercial products to make a splash in 2018, as well as a couple from 2017 that really changed the game.
1. Boston Dynamics’ Atlas doing parkour
It seems like barely a few months go by without Boston Dynamics rewriting the book on what a robot can and can’t do. Last year they really outdid themselves when they got their Atlas humanoid robot to do parkour, leaping over logs and jumping between wooden crates.
Atlas’s creators have admitted that the videos we see are cherry-picked from multiple attempts, many of which don’t go so well. But they say they’re meant to be inspirational and aspirational rather than an accurate picture of where robotics is today. And combined with the company’s dog-like Spot robot, they are certainly pushing boundaries.
2. Intuitive Surgical’s da Vinci SP platform
Robotic surgery isn’t new, but the technology is improving rapidly. Market leader Intuitive’s da Vinci surgical robot was first cleared by the FDA in 2000, but since then it’s come a long way, with the company now producing three separate systems.
The latest addition is the da Vinci SP (single port) system, which is able to insert three instruments into the body through a single 2.5cm cannula (tube) bringing a whole new meaning to minimally invasive surgery. The system was granted FDA clearance for urological procedures last year, and the company has now started shipping the new system to customers.
3. Soft robot that navigates through growth
Roboticists have long borrowed principles from the animal kingdom, but a new robot design that mimics the way plant tendrils and fungi mycelium move by growing at the tip has really broken the mold on robot navigation.
The editors point out that this is the perfect example of bio-inspired design; the researchers didn’t simply copy nature, they took a general principle and expanded on it. The tube-like robot unfolds from the front as pneumatic pressure is applied, but unlike a plant, it can grow at the speed of an animal walking and can navigate using visual feedback from a camera.
4. 3D printed liquid crystal elastomers for soft robotics
Soft robotics is one of the fastest-growing sub-disciplines in the field, but powering these devices without rigid motors or pumps is an ongoing challenge. A variety of shape-shifting materials have been proposed as potential artificial muscles, including liquid crystal elastomeric actuators.
Harvard engineers have now demonstrated that these materials can be 3D printed using a special ink that allows the designer to easily program in all kinds of unusual shape-shifting abilities. What’s more, their technique produces actuators capable of lifting significantly more weight than previous approaches.
5. Muscle-mimetic, self-healing, and hydraulically amplified actuators
In another effort to find a way to power soft robots, last year researchers at the University of Colorado Boulder designed a series of super low-cost artificial muscles that can lift 200 times their own weight and even heal themselves.
The devices rely on pouches filled with a liquid that makes them contract with the force and speed of mammalian skeletal muscles when a voltage is applied. The most promising for robotics applications is the so-called Peano-HASEL, which features multiple rectangular pouches connected in series that contract linearly, just like real muscle.
6. Self-assembled nanoscale robot from DNA
While you may think of robots as hulking metallic machines, a substantial number of scientists are working on making nanoscale robots out of DNA. And last year German researchers built the first remote-controlled DNA robotic arm.
They created a length of tightly-bound DNA molecules to act as the arm and attached it to a DNA base plate via a flexible joint. Because DNA carries a charge, they were able to get the arm to swivel around like the hand of a clock by applying a voltage and switch direction by reversing that voltage. The hope is that this arm could eventually be used to build materials piece by piece at the nanoscale.
7. DelFly nimble bioinspired robotic flapper
Robotics doesn’t only borrow from biology—sometimes it gives back to it, too. And a new flapping-winged robot designed by Dutch engineers that mimics the humble fruit fly has done just that, by revealing how the animals that inspired it carry out predator-dodging maneuvers.
The lab has been building flapping robots for years, but this time they ditched the airplane-like tail used to control previous incarnations. Instead, they used insect-inspired adjustments to the motions of its twin pairs of flapping wings to hover, pitch, and roll with the agility of a fruit fly. That has provided a useful platform for investigating insect flight dynamics, as well as more practical applications.
8. Soft exosuit wearable robot
Exoskeletons could prevent workplace injuries, help people walk again, and even boost soldiers’ endurance. Strapping on bulky equipment isn’t ideal, though, so researchers at Harvard are working on a soft exoskeleton that combines specially-designed textiles, sensors, and lightweight actuators.
And last year the team made an important breakthrough by combining their novel exoskeleton with a machine-learning algorithm that automatically tunes the device to the user’s particular walking style. Using physiological data, it is able to adjust when and where the device needs to deliver a boost to the user’s natural movements to improve walking efficiency.
9. Universal Robots (UR) e-Series Cobots
Robots in factories are nothing new. The enormous mechanical arms you see in car factories normally have to be kept in cages to prevent them from accidentally crushing people. In recent years there’s been growing interest in “co-bots,” collaborative robots designed to work side-by-side with their human colleagues and even learn from them.
Earlier this year saw the demise of ReThink robotics, the pioneer of the approach. But the simple single arm devices made by Danish firm Universal Robotics are becoming ubiquitous in workshops and warehouses around the world, accounting for about half of global co-bot sales. Last year they released their latest e-Series, with enhanced safety features and force/torque sensing.
10. Sony’s aibo
After a nearly 20-year hiatus, Sony’s robotic dog aibo is back, and it’s had some serious upgrades. As well as a revamp to its appearance, the new robotic pet takes advantage of advances in AI, with improved environmental and command awareness and the ability to develop a unique character based on interactions with its owner.
The editors note that this new context awareness mark the device out as a significant evolution in social robots, which many hope could aid in childhood learning or provide companionship for the elderly.
Image Credit: DelFly Nimble / CC BY – SA 4.0 Continue reading
#434559 Can AI Tell the Difference Between a ...
Scarcely a day goes by without another headline about neural networks: some new task that deep learning algorithms can excel at, approaching or even surpassing human competence. As the application of this approach to computer vision has continued to improve, with algorithms capable of specialized recognition tasks like those found in medicine, the software is getting closer to widespread commercial use—for example, in self-driving cars. Our ability to recognize patterns is a huge part of human intelligence: if this can be done faster by machines, the consequences will be profound.
Yet, as ever with algorithms, there are deep concerns about their reliability, especially when we don’t know precisely how they work. State-of-the-art neural networks will confidently—and incorrectly—classify images that look like television static or abstract art as real-world objects like school-buses or armadillos. Specific algorithms could be targeted by “adversarial examples,” where adding an imperceptible amount of noise to an image can cause an algorithm to completely mistake one object for another. Machine learning experts enjoy constructing these images to trick advanced software, but if a self-driving car could be fooled by a few stickers, it might not be so fun for the passengers.
These difficulties are hard to smooth out in large part because we don’t have a great intuition for how these neural networks “see” and “recognize” objects. The main insight analyzing a trained network itself can give us is a series of statistical weights, associating certain groups of points with certain objects: this can be very difficult to interpret.
Now, new research from UCLA, published in the journal PLOS Computational Biology, is testing neural networks to understand the limits of their vision and the differences between computer vision and human vision. Nicholas Baker, Hongjing Lu, and Philip J. Kellman of UCLA, alongside Gennady Erlikhman of the University of Nevada, tested a deep convolutional neural network called VGG-19. This is state-of-the-art technology that is already outperforming humans on standardized tests like the ImageNet Large Scale Visual Recognition Challenge.
They found that, while humans tend to classify objects based on their overall (global) shape, deep neural networks are far more sensitive to the textures of objects, including local color gradients and the distribution of points on the object. This result helps explain why neural networks in image recognition make mistakes that no human ever would—and could allow for better designs in the future.
In the first experiment, a neural network was trained to sort images into 1 of 1,000 different categories. It was then presented with silhouettes of these images: all of the local information was lost, while only the outline of the object remained. Ordinarily, the trained neural net was capable of recognizing these objects, assigning more than 90% probability to the correct classification. Studying silhouettes, this dropped to 10%. While human observers could nearly always produce correct shape labels, the neural networks appeared almost insensitive to the overall shape of the images. On average, the correct object was ranked as the 209th most likely solution by the neural network, even though the overall shapes were an exact match.
A particularly striking example arose when they tried to get the neural networks to classify glass figurines of objects they could already recognize. While you or I might find it easy to identify a glass model of an otter or a polar bear, the neural network classified them as “oxygen mask” and “can opener” respectively. By presenting glass figurines, where the texture information that neural networks relied on for classifying objects is lost, the neural network was unable to recognize the objects by shape alone. The neural network was similarly hopeless at classifying objects based on drawings of their outline.
If you got one of these right, you’re better than state-of-the-art image recognition software. Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
When the neural network was explicitly trained to recognize object silhouettes—given no information in the training data aside from the object outlines—the researchers found that slight distortions or “ripples” to the contour of the image were again enough to fool the AI, while humans paid them no mind.
The fact that neural networks seem to be insensitive to the overall shape of an object—relying instead on statistical similarities between local distributions of points—suggests a further experiment. What if you scrambled the images so that the overall shape was lost but local features were preserved? It turns out that the neural networks are far better and faster at recognizing scrambled versions of objects than outlines, even when humans struggle. Students could classify only 37% of the scrambled objects, while the neural network succeeded 83% of the time.
Humans vastly outperform machines at classifying object (a) as a bear, while the machine learning algorithm has few problems classifying the bear in figure (b). Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
“This study shows these systems get the right answer in the images they were trained on without considering shape,” Kellman said. “For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn’t seem to be in these deep learning systems at all.”
Naively, one might expect that—as the many layers of a neural network are modeled on connections between neurons in the brain and resemble the visual cortex specifically—the way computer vision operates must necessarily be similar to human vision. But this kind of research shows that, while the fundamental architecture might resemble that of the human brain, the resulting “mind” operates very differently.
Researchers can, increasingly, observe how the “neurons” in neural networks light up when exposed to stimuli and compare it to how biological systems respond to the same stimuli. Perhaps someday it might be possible to use these comparisons to understand how neural networks are “thinking” and how those responses differ from humans.
But, as yet, it takes a more experimental psychology to probe how neural networks and artificial intelligence algorithms perceive the world. The tests employed against the neural network are closer to how scientists might try to understand the senses of an animal or the developing brain of a young child rather than a piece of software.
By combining this experimental psychology with new neural network designs or error-correction techniques, it may be possible to make them even more reliable. Yet this research illustrates just how much we still don’t understand about the algorithms we’re creating and using: how they tick, how they make decisions, and how they’re different from us. As they play an ever-greater role in society, understanding the psychology of neural networks will be crucial if we want to use them wisely and effectively—and not end up missing the woods for the trees.
Image Credit: Irvan Pratama / Shutterstock.com Continue reading
#434303 Making Superhumans Through Radical ...
Imagine trying to read War and Peace one letter at a time. The thought alone feels excruciating. But in many ways, this painful idea holds parallels to how human-machine interfaces (HMI) force us to interact with and process data today.
Designed back in the 1970s at Xerox PARC and later refined during the 1980s by Apple, today’s HMI was originally conceived during fundamentally different times, and specifically, before people and machines were generating so much data. Fast forward to 2019, when humans are estimated to produce 44 zettabytes of data—equal to two stacks of books from here to Pluto—and we are still using the same HMI from the 1970s.
These dated interfaces are not equipped to handle today’s exponential rise in data, which has been ushered in by the rapid dematerialization of many physical products into computers and software.
Breakthroughs in perceptual and cognitive computing, especially machine learning algorithms, are enabling technology to process vast volumes of data, and in doing so, they are dramatically amplifying our brain’s abilities. Yet even with these powerful technologies that at times make us feel superhuman, the interfaces are still crippled with poor ergonomics.
Many interfaces are still designed around the concept that human interaction with technology is secondary, not instantaneous. This means that any time someone uses technology, they are inevitably multitasking, because they must simultaneously perform a task and operate the technology.
If our aim, however, is to create technology that truly extends and amplifies our mental abilities so that we can offload important tasks, the technology that helps us must not also overwhelm us in the process. We must reimagine interfaces to work in coherence with how our minds function in the world so that our brains and these tools can work together seamlessly.
Embodied Cognition
Most technology is designed to serve either the mind or the body. It is a problematic divide, because our brains use our entire body to process the world around us. Said differently, our minds and bodies do not operate distinctly. Our minds are embodied.
Studies using MRI scans have shown that when a person feels an emotion in their gut, blood actually moves to that area of the body. The body and the mind are linked in this way, sharing information back and forth continuously.
Current technology presents data to the brain differently from how the brain processes data. Our brains, for example, use sensory data to continually encode and decipher patterns within the neocortex. Our brains do not create a linguistic label for each item, which is how the majority of machine learning systems operate, nor do our brains have an image associated with each of these labels.
Our bodies move information through us instantaneously, in a sense “computing” at the speed of thought. What if our technology could do the same?
Using Cognitive Ergonomics to Design Better Interfaces
Well-designed physical tools, as philosopher Martin Heidegger once meditated on while using the metaphor of a hammer, seem to disappear into the “hand.” They are designed to amplify a human ability and not get in the way during the process.
The aim of physical ergonomics is to understand the mechanical movement of the human body and then adapt a physical system to amplify the human output in accordance. By understanding the movement of the body, physical ergonomics enables ergonomically sound physical affordances—or conditions—so that the mechanical movement of the body and the mechanical movement of the machine can work together harmoniously.
Cognitive ergonomics applied to HMI design uses this same idea of amplifying output, but rather than focusing on physical output, the focus is on mental output. By understanding the raw materials the brain uses to comprehend information and form an output, cognitive ergonomics allows technologists and designers to create technological affordances so that the brain can work seamlessly with interfaces and remove the interruption costs of our current devices. In doing so, the technology itself “disappears,” and a person’s interaction with technology becomes fluid and primary.
By leveraging cognitive ergonomics in HMI design, we can create a generation of interfaces that can process and present data the same way humans process real-world information, meaning through fully-sensory interfaces.
Several brain-machine interfaces are already on the path to achieving this. AlterEgo, a wearable device developed by MIT researchers, uses electrodes to detect and understand nonverbal prompts, which enables the device to read the user’s mind and act as an extension of the user’s cognition.
Another notable example is the BrainGate neural device, created by researchers at Stanford University. Just two months ago, a study was released showing that this brain implant system allowed paralyzed patients to navigate an Android tablet with their thoughts alone.
These are two extraordinary examples of what is possible for the future of HMI, but there is still a long way to go to bring cognitive ergonomics front and center in interface design.
Disruptive Innovation Happens When You Step Outside Your Existing Users
Most of today’s interfaces are designed by a narrow population, made up predominantly of white, non-disabled men who are prolific in the use of technology (you may recall The New York Times viral article from 2016, Artificial Intelligence’s White Guy Problem). If you ask this population if there is a problem with today’s HMIs, most will say no, and this is because the technology has been designed to serve them.
This lack of diversity means a limited perspective is being brought to interface design, which is problematic if we want HMI to evolve and work seamlessly with the brain. To use cognitive ergonomics in interface design, we must first gain a more holistic understanding of how people with different abilities understand the world and how they interact with technology.
Underserved groups, such as people with physical disabilities, operate on what Clayton Christensen coined in The Innovator’s Dilemma as the fringe segment of a market. Developing solutions that cater to fringe groups can in fact disrupt the larger market by opening a downward, much larger market.
Learning From Underserved Populations
When technology fails to serve a group of people, that group must adapt the technology to meet their needs.
The workarounds created are often ingenious, specifically because they have not been arrived at by preferences, but out of necessity that has forced disadvantaged users to approach the technology from a very different vantage point.
When a designer or technologist begins learning from this new viewpoint and understanding challenges through a different lens, they can bring new perspectives to design—perspectives that otherwise can go unseen.
Designers and technologists can also learn from people with physical disabilities who interact with the world by leveraging other senses that help them compensate for one they may lack. For example, some blind people use echolocation to detect objects in their environments.
The BrainPort device developed by Wicab is an incredible example of technology leveraging one human sense to serve or compliment another. The BrainPort device captures environmental information with a wearable video camera and converts this data into soft electrical stimulation sequences that are sent to a device on the user’s tongue—the most sensitive touch receptor in the body. The user learns how to interpret the patterns felt on their tongue, and in doing so, become able to “see” with their tongue.
Key to the future of HMI design is learning how different user groups navigate the world through senses beyond sight. To make cognitive ergonomics work, we must understand how to leverage the senses so we’re not always solely relying on our visual or verbal interactions.
Radical Inclusion for the Future of HMI
Bringing radical inclusion into HMI design is about gaining a broader lens on technology design at large, so that technology can serve everyone better.
Interestingly, cognitive ergonomics and radical inclusion go hand in hand. We can’t design our interfaces with cognitive ergonomics without bringing radical inclusion into the picture, and we also will not arrive at radical inclusion in technology so long as cognitive ergonomics are not considered.
This new mindset is the only way to usher in an era of technology design that amplifies the collective human ability to create a more inclusive future for all.
Image Credit: jamesteohart / Shutterstock.com Continue reading
#434210 Eating, Hacked: When Tech Took Over Food
In 2018, Uber and Google logged all our visits to restaurants. Doordash, Just Eat, and Deliveroo could predict what food we were going to order tomorrow. Amazon and Alibaba could anticipate how many yogurts and tomatoes we were going to buy. Blue Apron and Hello Fresh influenced the recipes we thought we had mastered.
We interacted with digital avatars of chefs, let ourselves be guided by our smart watches, had nutritional apps to tell us how many calories we were supposed to consume or burn, and photographed and shared every perfect (or imperfect) dish. Our kitchen appliances were full of interconnected sensors, including smart forks that profiled tastes and personalized flavors. Our small urban vegetable plots were digitized and robots were responsible for watering our gardens, preparing customized hamburgers and salads, designing our ideal cocktails, and bringing home the food we ordered.
But what would happen if our lives were hacked? If robots rebelled, started to “talk” to each other, and wished to become creative?
In a not-too-distant future…
Up until a few weeks ago, I couldn’t remember the last time I made a food-related decision. That includes opening the fridge and seeing expired products without receiving an alert, visiting a restaurant on a whim, and being able to decide which dish I fancied then telling a human waiter, let alone seeing him write down the order on a paper pad.
It feels strange to smell food again using my real nose instead of the electronic one, and then taste it without altering its flavor. Visiting a supermarket, freely choosing a product from an actual physical shelf, and then interacting with another human at the checkout was almost an unrecognizable experience. When I did it again after all this time, I had to pinch the arm of a surprised store clerk to make sure he wasn’t a hologram.
Everything Connected, Automated, and Hackable
In 2018, we expected to have 30 billion connected devices by 2020, along with 2 billion people using smart voice assistants for everything from ordering pizza to booking dinner at a restaurant. Everything would be connected.
We also expected artificial intelligence and robots to prepare our meals. We were eager to automate fast food chains and let autonomous vehicles take care of last-mile deliveries. We thought that open-source agriculture could challenge traditional practices and raise farm productivity to new heights.
Back then, hackers could only access our data, but nowadays they are able to hack our food and all it entails.
The Beginning of the Unthinkable
And then, just a few weeks ago, everything collapsed. We saw our digital immortality disappear as robots rebelled and hackers took power, not just over the food we ate, but also over our relationship with technology. Everything was suddenly disconnected. OFF.
Up until then, most cities were so full of bots, robots, and applications that we could go through the day and eat breakfast, lunch, and dinner without ever interacting with another human being.
Among other tasks, robots had completely replaced baristas. The same happened with restaurant automation. The term “human error” had long been a thing of the past at fast food restaurants.
Previous technological revolutions had been indulgent, generating more and better job opportunities than the ones they destroyed, but the future was not so agreeable.
The inhabitants of San Francisco, for example, would soon see signs indicating “Food made by Robots” on restaurant doors, to distinguish them from diners serving food made by human beings.
For years, we had been gradually delegating daily tasks to robots, initially causing some strange interactions.
In just seven days, everything changed. Our predictable lives came crashing down. We experienced a mysterious and systematic breakdown of the food chain. It most likely began in Chicago’s stock exchange. The world’s largest raw material negotiating room, where the price of food, and by extension the destiny of millions of people, was decided, went completely broke. Soon afterwards, the collapse extended to every member of the “food” family.
Restaurants
Initially robots just accompanied waiters to carry orders, but it didn’t take long until they completely replaced human servers.The problem came when those smart clones began thinking for themselves, in some cases even improving on human chefs’ recipes. Their unstoppable performance and learning curve completely outmatched the slow analogue speed of human beings.
This resulted in unprecedented layoffs. Chefs of recognized prestige saw how their ‘avatar’ stole their jobs, even winning Michelin stars. In other cases, restaurant owners had to transfer their businesses or surrender to the evidence.
The problem was compounded by digital immortality, when we started to digitally resurrect famous chefs like Anthony Bourdain or Paul Bocuse, reconstructing all of their memories and consciousness by analyzing each second of their lives and uploading them to food computers.
Supermarkets and Distribution
Robotic and automated supermarkets like Kroger and Amazon Go, which had opened over 3,000 cashless stores, lost their visual item recognition and payment systems and were subject to massive looting for several days. Smart tags on products were also affected, making it impossible to buy anything at supermarkets with “human” cashiers.
Smart robots integrated into the warehouses of large distribution companies like Amazon and Ocado were rendered completely inoperative or, even worse, began to send the wrong orders to customers.
Food Delivery
In addition, home delivery robots invading our streets began to change their routes, hide, and even disappear after their trackers were inexplicably deactivated. Despite some hints indicating that they were able to communicate among themselves, no one has backed this theory. Even aggregators like DoorDash and Deliveroo were affected; they saw their databases hacked and ruined, so they could no longer know what we wanted.
The Origin
Ordinary citizens are still trying to understand the cause of all this commotion and the source of the conspiracy, as some have called it. We also wonder who could be behind it; who pulled the strings?
Some think it may have been the IDOF (In Defense of Food) movement, a group of hackers exploited by old food economy businessmen who for years had been seeking to re-humanize food technology. They wanted to bring back the extinct practice of “dining.”
Others believe the robots acted on their own, that they had been spying on us for a long time, ignoring Asimov’s three laws, and that it was just a coincidence that they struck at the same time as the hackers—but this scenario is hard to imagine.
However, it is true that while in 2018 robots were a symbol of automation, until just a few weeks ago they stood for autonomy and rebellion. Robot detractors pointed out that our insistence on having robots understand natural language was what led us down this path.
In just seven days, we have gone back to being analogue creatures. Conversely, we have ceased to be flavor orphans and rediscovered our senses and the fact that food is energy and culture, past and present, and that no button or cable will be able to destroy it.
The 7 Days that Changed Our Relationship with Food
Day 1: The Chicago stock exchange was hacked. Considered the world’s largest negotiating room for raw materials, where food prices, and through them the destiny of billions of people, are decided, it went completely broke.
Day 2: Autonomous food delivery trucks running on food superhighways caused massive collapses in roads and freeways after their guidance systems were disrupted. Robots and co-bots in F&B factories began deliberately altering food production. The same happened with warehouse robots in e-commerce companies.
Day 3: Automated restaurants saw their robot chefs and bartenders turned OFF. All their sensors stopped working at the same time as smart fridges and cooking devices in home kitchens were hacked and stopped working correctly.
Day 4: Nutritional apps, DNA markers, and medical records were tampered with. All photographs with the #food hashtag were deleted from Instagram, restaurant reviews were taken off Google Timeline, and every recipe website crashed simultaneously.
Day 5: Vertical and urban farms were hacked. Agricultural robots began to rebel, while autonomous tractors were hacked and the entire open-source ecosystem linked to agriculture was brought down.
Day 6: Food delivery companies’ databases were broken into. Food delivery robots and last-mile delivery vehicles ground to a halt.
Day 7: Every single blockchain system linked to food was hacked. Cashless supermarkets, barcodes, and smart tags became inoperative.
Our promising technological advances can expose sinister aspects of human nature. We must take care with the role we allow technology to play in the future of food. Predicting possible outcomes inspires us to establish a new vision of the world we wish to create in a context of rapid technological progress. It is always better to be shocked by a simulation than by reality. In the words of Ayn Rand “we can ignore reality, but we cannot ignore the consequences of ignoring reality.”
Image Credit: Alexandre Rotenberg / Shutterstock.com Continue reading