Tag Archives: vision

#433872 Breaking Out of the Corporate Bubble ...

For big companies, success is a blessing and a curse. You don’t get big without doing something (or many things) very right. It might start with an invention or service the world didn’t know it needed. Your product takes off, and growth brings a whole new set of logistical challenges. Delivering consistent quality, hiring the right team, establishing a strong culture, tapping into new markets, satisfying shareholders. The list goes on.

Eventually, however, what made you successful also makes you resistant to change.

You’ve built a machine for one purpose, and it’s running smoothly, but what about retooling that machine to make something new? Not so easy. Leaders of big companies know there is no future for their organizations without change. And yet, they struggle to drive it.

In their new book, Leading Transformation: How to Take Charge of Your Company’s Future, Kyle Nel, Nathan Furr, and Thomas Ramsøy aim to deliver a roadmap for corporate transformation.

The book focuses on practical tools that have worked in big companies to break down behavioral and cognitive biases, envision radical futures, and run experiments. These include using science fiction and narrative to see ahead and adopting better measures of success for new endeavors.

A thread throughout is how to envision a new future and move into that future.

We’re limited by the bubbles in which we spend the most time—the corporate bubble, the startup bubble, the nonprofit bubble. The mutually beneficial convergence of complementary bubbles, then, can be a powerful tool for kickstarting transformation. The views and experiences of one partner can challenge the accepted wisdom of the other; resources can flow into newly co-created visions and projects; and connections can be made that wouldn’t otherwise exist.

The authors call such alliances uncommon partners. In the following excerpt from the book, Made In Space, a startup building 3D printers for space, helps Lowe’s explore an in-store 3D printing system, and Lowe’s helps Made In Space expand its vision and focus.

Uncommon Partners
In a dingy conference room at NASA, five prototypical nerds, smelling of Thai food, laid out the path to printing satellites in space and buildings on distant planets. At the end of their four-day marathon, they emerged with an artifact trail that began with early prototypes for the first 3D printer on the International Space Station and ended in the additive-manufacturing future—a future much bigger than 3D printing.

In the additive-manufacturing future, we will view everything as transient, or capable of being repurposed into new things. Rather than throwing away a soda bottle or a bent nail, we will simply reprocess these things into a new hinge for the fence we are building or a light switch plate for the tool shed. Indeed, we might not even go buy bricks for the tool shed, but instead might print them from impurities pulled from the air and the dirt beneath our feet. Such a process would both capture carbon in the air to make the bricks and avoid all the carbon involved in making and then transporting traditional bricks to your house.

If it all sounds a little too science fiction, think again. Lowe’s has already been honored as a Champion of Change by the US government for its prototype system to recycle plastic (e.g., plastic bags and bottles). The future may be closer than you have imagined. But to get there, Lowe’s didn’t work alone. It had to work with uncommon partners to create the future.

Uncommon partners are the types of organizations you might not normally work with, but which can greatly help you create radical new futures. Increasingly, as new technologies emerge and old industries converge, companies are finding that working independently to create all the necessary capabilities to enter new industries or create new technologies is costly, risky, and even counterproductive. Instead, organizations are finding that they need to collaborate with uncommon partners as an ecosystem to cocreate the future together. Nathan [Furr] and his colleague at INSEAD, Andrew Shipilov, call this arrangement an adaptive ecosystem strategy and described how companies such as Lowe’s, Samsung, Mastercard, and others are learning to work differently with partners and to work with different kinds of partners to more effectively discover new opportunities. For Lowe’s, an adaptive ecosystem strategy working with uncommon partners forms the foundation of capturing new opportunities and transforming the company. Despite its increased agility, Lowe’s can’t be (and shouldn’t become) an independent additive-manufacturing, robotics-using, exosuit-building, AR-promoting, fill-in-the-blank-what’s-next-ing company in addition to being a home improvement company. Instead, Lowe’s applies an adaptive ecosystem strategy to find the uncommon partners with which it can collaborate in new territory.

To apply the adaptive ecosystem strategy with uncommon partners, start by identifying the technical or operational components required for a particular focus area (e.g., exosuits) and then sort these components into three groups. First, there are the components that are emerging organically without any assistance from the orchestrator—the leader who tries to bring together the adaptive ecosystem. Second, there are the elements that might emerge, with encouragement and support. Third are the elements that won’t happen unless you do something about it. In an adaptive ecosystem strategy, you can create regular partnerships for the first two elements—those already emerging or that might emerge—if needed. But you have to create the elements in the final category (those that won’t emerge) either with an uncommon partner or by yourself.

For example, when Lowe’s wanted to explore the additive-manufacturing space, it began a search for an uncommon partner to provide the missing but needed capabilities. Unfortunately, initial discussions with major 3D printing companies proved disappointing. The major manufacturers kept trying to sell Lowe’s 3D printers. But the vision our group had created with science fiction was not for vendors to sell Lowe’s a printer, but for partners to help the company build a system—something that would allow customers to scan, manipulate, print, and eventually recycle additive-manufacturing objects. Every time we discussed 3D printing systems with these major companies, they responded that they could do it and then tried to sell printers. When Carin Watson, one of the leading lights at Singularity University, introduced us to Made In Space (a company being incubated in Singularity University’s futuristic accelerator), we discovered an uncommon partner that understood what it meant to cocreate a system.

Initially, Made In Space had been focused on simply getting 3D printing to work in space, where you can’t rely on gravity, you can’t send up a technician if the machine breaks, and you can’t release noxious fumes into cramped spacecraft quarters. But after the four days in the conference room going over the comic for additive manufacturing, Made In Space and Lowe’s emerged with a bigger vision. The company helped lay out an artifact trail that included not only the first printer on the International Space Station but also printing system services in Lowe’s stores.

Of course, the vision for an additive-manufacturing future didn’t end there. It also reshaped Made In Space’s trajectory, encouraging the startup, during those four days in a NASA conference room, to design a bolder future. Today, some of its bold projects include the Archinaut, a system that enables satellites to build themselves while in space, a direction that emerged partly from the science fiction narrative we created around additive manufacturing.

In summary, uncommon partners help you succeed by providing you with the capabilities you shouldn’t be building yourself, as well as with fresh insights. You also help uncommon partners succeed by creating new opportunities from which they can prosper.

Helping Uncommon Partners Prosper
Working most effectively with uncommon partners can require a shift from more familiar outsourcing or partnership relationships. When working with uncommon partners, you are trying to cocreate the future, which entails a great deal more uncertainty. Because you can’t specify outcomes precisely, agreements are typically less formal than in other types of relationships, and they operate under the provisions of shared vision and trust more than binding agreement clauses. Moreover, your goal isn’t to extract all the value from the relationship. Rather, you need to find a way to share the value.

Ideally, your uncommon partners should be transformed for the better by the work you do. For example, Lowe’s uncommon partner developing the robotics narrative was a small startup called Fellow Robots. Through their work with Lowe’s, Fellow Robots transformed from a small team focused on a narrow application of robotics (which was arguably the wrong problem) to a growing company developing a very different and valuable set of capabilities: putting cutting-edge technology on top of the old legacy systems embedded at the core of most companies. Working with Lowe’s allowed Fellow Robots to discover new opportunities, and today Fellow Robots works with retailers around the world, including BevMo! and Yamada. Ultimately, working with uncommon partners should be transformative for both of you, so focus more on creating a bigger pie than on how you are going to slice up a smaller pie.

The above excerpt appears in the new book Leading Transformation: How to Take Charge of Your Company’s Future by Kyle Nel, Nathan Furr, and Thomas Ramsøy, published by Harvard Business Review Press.

Image Credit: Here / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#433871 What is Machine Learning Going to Do – ...

While computer scientists have been advertising Artificial Intelligence for more than half a century, the technology is just beginning to uncover its true potential. Despite all the hype, machine learning, deep learning, computer vision and natural language processing have, silently, become entrenched in many people’s daily routines. These innovations have brought with them new abilities …

The post What is Machine Learning Going to Do – Artificial Intelligence is Here in Digital Marketing! appeared first on TFOT. Continue reading

Posted in Human Robots

#433807 The How, Why, and Whether of Custom ...

A digital afterlife may soon be within reach, but it might not be for your benefit.

The reams of data we’re creating could soon make it possible to create digital avatars that live on after we die, aimed at comforting our loved ones or sharing our experience with future generations.

That may seem like a disappointing downgrade from the vision promised by the more optimistic futurists, where we upload our consciousness to the cloud and live forever in machines. But it might be a realistic possibility in the not-too-distant future—and the first steps have already been taken.

After her friend died in a car crash, Eugenia Kuyda, co-founder of Russian AI startup Luka, trained a neural network-powered chatbot on their shared message history to mimic him. Journalist and amateur coder James Vlahos took a more involved approach, carrying out extensive interviews with his terminally ill father so that he could create a digital clone of him when he died.

For those of us without the time or expertise to build our own artificial intelligence-powered avatar, startup Eternime is offering to take your social media posts and interactions as well as basic personal information to build a copy of you that could then interact with relatives once you’re gone. The service is so far only running a private beta with a handful of people, but with 40,000 on its waiting list, it’s clear there’s a market.

Comforting—Or Creepy?
The whole idea may seem eerily similar to the Black Mirror episode Be Right Back, in which a woman pays a company to create a digital copy of her deceased husband and eventually a realistic robot replica. And given the show’s focus on the emotional turmoil she goes through, people might question whether the idea is a sensible one.

But it’s hard to say at this stage whether being able to interact with an approximation of a deceased loved one would be a help or a hindrance in the grieving process. The fear is that it could make it harder for people to “let go” or “move on,” but others think it could play a useful therapeutic role, reminding people that just because someone is dead it doesn’t mean they’re gone, and providing a novel way for them to express and come to terms with their feelings.

While at present most envisage these digital resurrections as a way to memorialize loved ones, there are also more ambitious plans to use the technology as a way to preserve expertise and experience. A project at MIT called Augmented Eternity is investigating whether we could use AI to trawl through someone’s digital footprints and extract both their knowledge and elements of their personality.

Project leader Hossein Rahnama says he’s already working with a CEO who wants to leave behind a digital avatar that future executives could consult with after he’s gone. And you wouldn’t necessarily have to wait until you’re dead—experts could create virtual clones of themselves that could dispense advice on demand to far more people. These clones could soon be more than simple chatbots, too. Hollywood has already started spending millions of dollars to create 3D scans of its most bankable stars so that they can keep acting beyond the grave.

It’s easy to see the appeal of the idea; imagine if we could bring back Stephen Hawking or Tim Cook to share their wisdom with us. And what if we could create a digital brain trust combining the experience and wisdom of all the world’s greatest thinkers, accessible on demand?

But there are still huge hurdles ahead before we could create truly accurate representations of people by simply trawling through their digital remains. The first problem is data. Most peoples’ digital footprints only started reaching significant proportions in the last decade or so, and cover a relatively small period of their lives. It could take many years before there’s enough data to create more than just a superficial imitation of someone.

And that’s assuming that the data we produce is truly representative of who we are. Carefully-crafted Instagram profiles and cautiously-worded work emails hardly capture the messy realities of most peoples’ lives.

Perhaps if the idea is simply to create a bank of someone’s knowledge and expertise, accurately capturing the essence of their character would be less important. But these clones would also be static. Real people continually learn and change, but a digital avatar is a snapshot of someone’s character and opinions at the point they died. An inability to adapt as the world around them changes could put a shelf life on the usefulness of these replicas.

Who’s Calling the (Digital) Shots?
It won’t stop people trying, though, and that raises a potentially more important question: Who gets to make the calls about our digital afterlife? The subjects, their families, or the companies that hold their data?

In most countries, the law is currently pretty hazy on this topic. Companies like Google and Facebook have processes to let you choose who should take control of your accounts in the event of your death. But if you’ve forgotten to do that, the fate of your virtual remains comes down to a tangle of federal law, local law, and tech company terms of service.

This lack of regulation could create incentives and opportunities for unscrupulous behavior. The voice of a deceased loved one could be a highly persuasive tool for exploitation, and digital replicas of respected experts could be powerful means of pushing a hidden agenda.

That means there’s a pressing need for clear and unambiguous rules. Researchers at Oxford University recently suggested ethical guidelines that would treat our digital remains the same way museums and archaeologists are required to treat mortal remains—with dignity and in the interest of society.

Whether those kinds of guidelines are ever enshrined in law remains to be seen, but ultimately they may decide whether the digital afterlife turns out to be heaven or hell.

Image Credit: frankie’s / Shutterstock.com Continue reading

Posted in Human Robots

#433594 Technology and Compassion: A ...

From how we get around to how we spend our time to how we manage our health, technology is changing our lives—not to mention economies, governments, and cities around the world. Tech has brought good to individuals and societies by, for example, democratizing access to information and lowering the cost of many products and services. But it’s also brought less-desirable effects we can’t ignore, like a rise in mental health problems and greater wealth inequality.

To keep pushing tech in a direction that will benefit humanity as a whole—rather than benefiting a select few—we must encourage open dialogues about these topics among leading figures in business, government, and spirituality.

To that end, SingularityU The Netherlands recently hosted a dialogue about compassion and technology with His Holiness the Dalai Lama. The event was attended by students and tech innovators, ambassadors, members of the Dutch royal family, and other political and business leaders.

The first half of the conversation focused on robotics, telepresence, and artificial intelligence. His Holiness spoke with Tilly Lockey, a British student helping tech companies create bionic limbs, Karen Dolva, CEO of telepresence company No Isolation, and Maarten Steinbuch, faculty chair of robotics at SingularityU the Netherlands and a professor of systems and control at TU Eindhoven.

When asked what big tech companies could be doing to help spread good around the world, His Holiness pointed out that while technology has changed many aspects of life in developed countries, there is still immense suffering in less-developed nations, and tech companies should pay more attention to the poorer communities around the world.

In the second half of the event, focus switched to sickness, aging, and death. Speakers included Liz Parrish, CEO of BioViva Sciences, Kris Verburgh, faculty chair of health and medicine at SingularityU the Netherlands, Jeantine Lunshof, a bio-ethicist at MIT Media Lab, and Selma Boulmalf, a religious studies student at University of Amsterdam. Among other topics, they talked with His Holiness about longevity research and the drawbacks of trying to extend our lifespans or achieve immortality.

Both sessions were moderated by Christa Meindersma, founder and chair of the Himalaya Initiative for Culture and Society. The event served as the ceremonial opening of an exhibition called The Life of the Buddha, Path to the Present, on display in Amsterdam’s 15-century De Nieuwe Kerk church through February 2019.

In the 21st century, His Holiness said, “There is real possibility to create a happier world, peaceful world. So now we need vision. A peaceful world on the basis of a sense of oneness of humanity.”

Technology’s role in that world is being developed and refined every day, and we must maintain an ongoing awareness of its positive and negative repercussions—on everyone.

Image Credit: vipflash / Shutterstock.com Continue reading

Posted in Human Robots

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots