Tag Archives: vision
#433871 What is Machine Learning Going to Do – ...
While computer scientists have been advertising Artificial Intelligence for more than half a century, the technology is just beginning to uncover its true potential. Despite all the hype, machine learning, deep learning, computer vision and natural language processing have, silently, become entrenched in many people’s daily routines. These innovations have brought with them new abilities …
The post What is Machine Learning Going to Do – Artificial Intelligence is Here in Digital Marketing! appeared first on TFOT. Continue reading
#433807 The How, Why, and Whether of Custom ...
A digital afterlife may soon be within reach, but it might not be for your benefit.
The reams of data we’re creating could soon make it possible to create digital avatars that live on after we die, aimed at comforting our loved ones or sharing our experience with future generations.
That may seem like a disappointing downgrade from the vision promised by the more optimistic futurists, where we upload our consciousness to the cloud and live forever in machines. But it might be a realistic possibility in the not-too-distant future—and the first steps have already been taken.
After her friend died in a car crash, Eugenia Kuyda, co-founder of Russian AI startup Luka, trained a neural network-powered chatbot on their shared message history to mimic him. Journalist and amateur coder James Vlahos took a more involved approach, carrying out extensive interviews with his terminally ill father so that he could create a digital clone of him when he died.
For those of us without the time or expertise to build our own artificial intelligence-powered avatar, startup Eternime is offering to take your social media posts and interactions as well as basic personal information to build a copy of you that could then interact with relatives once you’re gone. The service is so far only running a private beta with a handful of people, but with 40,000 on its waiting list, it’s clear there’s a market.
Comforting—Or Creepy?
The whole idea may seem eerily similar to the Black Mirror episode Be Right Back, in which a woman pays a company to create a digital copy of her deceased husband and eventually a realistic robot replica. And given the show’s focus on the emotional turmoil she goes through, people might question whether the idea is a sensible one.
But it’s hard to say at this stage whether being able to interact with an approximation of a deceased loved one would be a help or a hindrance in the grieving process. The fear is that it could make it harder for people to “let go” or “move on,” but others think it could play a useful therapeutic role, reminding people that just because someone is dead it doesn’t mean they’re gone, and providing a novel way for them to express and come to terms with their feelings.
While at present most envisage these digital resurrections as a way to memorialize loved ones, there are also more ambitious plans to use the technology as a way to preserve expertise and experience. A project at MIT called Augmented Eternity is investigating whether we could use AI to trawl through someone’s digital footprints and extract both their knowledge and elements of their personality.
Project leader Hossein Rahnama says he’s already working with a CEO who wants to leave behind a digital avatar that future executives could consult with after he’s gone. And you wouldn’t necessarily have to wait until you’re dead—experts could create virtual clones of themselves that could dispense advice on demand to far more people. These clones could soon be more than simple chatbots, too. Hollywood has already started spending millions of dollars to create 3D scans of its most bankable stars so that they can keep acting beyond the grave.
It’s easy to see the appeal of the idea; imagine if we could bring back Stephen Hawking or Tim Cook to share their wisdom with us. And what if we could create a digital brain trust combining the experience and wisdom of all the world’s greatest thinkers, accessible on demand?
But there are still huge hurdles ahead before we could create truly accurate representations of people by simply trawling through their digital remains. The first problem is data. Most peoples’ digital footprints only started reaching significant proportions in the last decade or so, and cover a relatively small period of their lives. It could take many years before there’s enough data to create more than just a superficial imitation of someone.
And that’s assuming that the data we produce is truly representative of who we are. Carefully-crafted Instagram profiles and cautiously-worded work emails hardly capture the messy realities of most peoples’ lives.
Perhaps if the idea is simply to create a bank of someone’s knowledge and expertise, accurately capturing the essence of their character would be less important. But these clones would also be static. Real people continually learn and change, but a digital avatar is a snapshot of someone’s character and opinions at the point they died. An inability to adapt as the world around them changes could put a shelf life on the usefulness of these replicas.
Who’s Calling the (Digital) Shots?
It won’t stop people trying, though, and that raises a potentially more important question: Who gets to make the calls about our digital afterlife? The subjects, their families, or the companies that hold their data?
In most countries, the law is currently pretty hazy on this topic. Companies like Google and Facebook have processes to let you choose who should take control of your accounts in the event of your death. But if you’ve forgotten to do that, the fate of your virtual remains comes down to a tangle of federal law, local law, and tech company terms of service.
This lack of regulation could create incentives and opportunities for unscrupulous behavior. The voice of a deceased loved one could be a highly persuasive tool for exploitation, and digital replicas of respected experts could be powerful means of pushing a hidden agenda.
That means there’s a pressing need for clear and unambiguous rules. Researchers at Oxford University recently suggested ethical guidelines that would treat our digital remains the same way museums and archaeologists are required to treat mortal remains—with dignity and in the interest of society.
Whether those kinds of guidelines are ever enshrined in law remains to be seen, but ultimately they may decide whether the digital afterlife turns out to be heaven or hell.
Image Credit: frankie’s / Shutterstock.com Continue reading
#433594 Technology and Compassion: A ...
From how we get around to how we spend our time to how we manage our health, technology is changing our lives—not to mention economies, governments, and cities around the world. Tech has brought good to individuals and societies by, for example, democratizing access to information and lowering the cost of many products and services. But it’s also brought less-desirable effects we can’t ignore, like a rise in mental health problems and greater wealth inequality.
To keep pushing tech in a direction that will benefit humanity as a whole—rather than benefiting a select few—we must encourage open dialogues about these topics among leading figures in business, government, and spirituality.
To that end, SingularityU The Netherlands recently hosted a dialogue about compassion and technology with His Holiness the Dalai Lama. The event was attended by students and tech innovators, ambassadors, members of the Dutch royal family, and other political and business leaders.
The first half of the conversation focused on robotics, telepresence, and artificial intelligence. His Holiness spoke with Tilly Lockey, a British student helping tech companies create bionic limbs, Karen Dolva, CEO of telepresence company No Isolation, and Maarten Steinbuch, faculty chair of robotics at SingularityU the Netherlands and a professor of systems and control at TU Eindhoven.
When asked what big tech companies could be doing to help spread good around the world, His Holiness pointed out that while technology has changed many aspects of life in developed countries, there is still immense suffering in less-developed nations, and tech companies should pay more attention to the poorer communities around the world.
In the second half of the event, focus switched to sickness, aging, and death. Speakers included Liz Parrish, CEO of BioViva Sciences, Kris Verburgh, faculty chair of health and medicine at SingularityU the Netherlands, Jeantine Lunshof, a bio-ethicist at MIT Media Lab, and Selma Boulmalf, a religious studies student at University of Amsterdam. Among other topics, they talked with His Holiness about longevity research and the drawbacks of trying to extend our lifespans or achieve immortality.
Both sessions were moderated by Christa Meindersma, founder and chair of the Himalaya Initiative for Culture and Society. The event served as the ceremonial opening of an exhibition called The Life of the Buddha, Path to the Present, on display in Amsterdam’s 15-century De Nieuwe Kerk church through February 2019.
In the 21st century, His Holiness said, “There is real possibility to create a happier world, peaceful world. So now we need vision. A peaceful world on the basis of a sense of oneness of humanity.”
Technology’s role in that world is being developed and refined every day, and we must maintain an ongoing awareness of its positive and negative repercussions—on everyone.
Image Credit: vipflash / Shutterstock.com Continue reading
#433506 MIT’s New Robot Taught Itself to Pick ...
Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.
Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.
This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.
The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.
This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.
Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.
Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.
Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.
But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.
This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.
The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.
This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.
“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”
Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.
Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.
As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.
This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.
Image Credit: Tom Buehler/CSAIL Continue reading