Tag Archives: vision
#435308 Brain-Machine Interfaces Are Getting ...
Elon Musk grabbed a lot of attention with his July 16 announcement that his company Neuralink plans to implant electrodes into the brains of people with paralysis by next year. Their first goal is to create assistive technology to help people who can’t move or are unable to communicate.
If you haven’t been paying attention, brain-machine interfaces (BMIs) that allow people to control robotic arms with their thoughts might sound like science fiction. But science and engineering efforts have already turned it into reality.
In a few research labs around the world, scientists and physicians have been implanting devices into the brains of people who have lost the ability to control their arms or hands for over a decade. In our own research group at the University of Pittsburgh, we’ve enabled people with paralyzed arms and hands to control robotic arms that allow them to grasp and move objects with relative ease. They can even experience touch-like sensations from their own hand when the robot grasps objects.
At its core, a BMI is pretty straightforward. In your brain, microscopic cells called neurons are sending signals back and forth to each other all the time. Everything you think, do and feel as you interact with the world around you is the result of the activity of these 80 billion or so neurons.
If you implant a tiny wire very close to one of these neurons, you can record the electrical activity it generates and send it to a computer. Record enough of these signals from the right area of the brain and it becomes possible to control computers, robots, or anything else you might want, simply by thinking about moving. But doing this comes with tremendous technical challenges, especially if you want to record from hundreds or thousands of neurons.
What Neuralink Is Bringing to the Table
Elon Musk founded Neuralink in 2017, aiming to address these challenges and raise the bar for implanted neural interfaces.
Perhaps the most impressive aspect of Neuralink’s system is the breadth and depth of their approach. Building a BMI is inherently interdisciplinary, requiring expertise in electrode design and microfabrication, implantable materials, surgical methods, electronics, packaging, neuroscience, algorithms, medicine, regulatory issues, and more. Neuralink has created a team that spans most, if not all, of these areas.
With all of this expertise, Neuralink is undoubtedly moving the field forward, and improving their technology rapidly. Individually, many of the components of their system represent significant progress along predictable paths. For example, their electrodes, that they call threads, are very small and flexible; many researchers have tried to harness those properties to minimize the chance the brain’s immune response would reject the electrodes after insertion. Neuralink has also developed high-performance miniature electronics, another focus area for labs working on BMIs.
Often overlooked in academic settings, however, is how an entire system would be efficiently implanted in a brain.
Neuralink’s BMI requires brain surgery. This is because implanted electrodes that are in intimate contact with neurons will always outperform non-invasive electrodes where neurons are far away from the electrodes sitting outside the skull. So, a critical question becomes how to minimize the surgical challenges around getting the device into a brain.
Maybe the most impressive aspect of Neuralink’s announcement was that they created a 3,000-electrode neural interface where electrodes could be implanted at a rate of between 30 and 200 per minute. Each thread of electrodes is implanted by a sophisticated surgical robot that essentially acts like a sewing machine. This all happens while specifically avoiding blood vessels that blanket the surface of the brain. The robotics and imaging that enable this feat, with tight integration to the entire device, is striking.
Neuralink has thought through the challenge of developing a clinically viable BMI from beginning to end in a way that few groups have done, though they acknowledge that many challenges remain as they work towards getting this technology into human patients in the clinic.
Figuring Out What More Electrodes Gets You
The quest for implantable devices with thousands of electrodes is not only the domain of private companies. DARPA, the NIH BRAIN Initiative, and international consortiums are working on neurotechnologies for recording and stimulating in the brain with goals of tens of thousands of electrodes. But what might scientists do with the information from 1,000, 3,000, or maybe even 100,000 neurons?
At some level, devices with more electrodes might not actually be necessary to have a meaningful impact in people’s lives. Effective control of computers for access and communication, of robotic limbs to grasp and move objects as well as of paralyzed muscles is already happening—in people. And it has been for a number of years.
Since the 1990s, the Utah Array, which has just 100 electrodes and is manufactured by Blackrock Microsystems, has been a critical device in neuroscience and clinical research. This electrode array is FDA-cleared for temporary neural recording. Several research groups, including our own, have implanted Utah Arrays in people that lasted multiple years.
Currently, the biggest constraints are related to connectors, electronics, and system-level engineering, not the implanted electrode itself—although increasing the electrodes’ lifespan to more than five years would represent a significant advance. As those technical capabilities improve, it might turn out that the ability to accurately control computers and robots is limited more by scientists’ understanding of what the neurons are saying—that is, the neural code—than by the number of electrodes on the device.
Even the most capable implanted system, and maybe the most capable devices researchers can reasonably imagine, might fall short of the goal of actually augmenting skilled human performance. Nevertheless, Neuralink’s goal of creating better BMIs has the potential to improve the lives of people who can’t move or are unable to communicate. Right now, Musk’s vision of using BMIs to meld physical brains and intelligence with artificial ones is no more than a dream.
So, what does the future look like for Neuralink and other groups creating implantable BMIs? Devices with more electrodes that last longer and are connected to smaller and more powerful wireless electronics are essential. Better devices themselves, however, are insufficient. Continued public and private investment in companies and academic research labs, as well as innovative ways for these groups to work together to share technologies and data, will be necessary to truly advance scientists’ understanding of the brain and deliver on the promise of BMIs to improve peoples’ lives.
While researchers need to keep the future societal implications of advanced neurotechnologies in mind—there’s an essential role for ethicists and regulation—BMIs could be truly transformative as they help more people overcome limitations caused by injury or disease in the brain and body.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: UPMC/Pitt Health Sciences, / CC BY-NC-ND Continue reading
#435231 Team programs a humanoid robot to ...
For a robot to be able to “learn” sign language, it is necessary to combine different areas of engineering such as artificial intelligence, neural networks and artificial vision, as well as underactuated robotic hands. “One of the main new developments of this research is that we united two major areas of Robotics: complex systems (such as robotic hands) and social interaction and communication,” explains Juan Víctores, one of the researchers from the Robotics Lab in the Department of Systems Engineering and Automation of the UC3M. Continue reading
#435161 Less Like Us: An Alternate Theory of ...
The question of whether an artificial general intelligence will be developed in the future—and, if so, when it might arrive—is controversial. One (very uncertain) estimate suggests 2070 might be the earliest we could expect to see such technology.
Some futurists point to Moore’s Law and the increasing capacity of machine learning algorithms to suggest that a more general breakthrough is just around the corner. Others suggest that extrapolating exponential improvements in hardware is unwise, and that creating narrow algorithms that can beat humans at specialized tasks brings us no closer to a “general intelligence.”
But evolution has produced minds like the human mind at least once. Surely we could create artificial intelligence simply by copying nature, either by guided evolution of simple algorithms or wholesale emulation of the human brain.
Both of these ideas are far easier to conceive of than they are to achieve. The 302 neurons of the nematode worm’s brain are still an extremely difficult engineering challenge, let alone the 86 billion in a human brain.
Leaving aside these caveats, though, many people are worried about artificial general intelligence. Nick Bostrom’s influential book on superintelligence imagines it will be an agent—an intelligence with a specific goal. Once such an agent reaches a human level of intelligence, it will improve itself—increasingly rapidly as it gets smarter—in pursuit of whatever goal it has, and this “recursive self-improvement” will lead it to become superintelligent.
This “intelligence explosion” could catch humans off guard. If the initial goal is poorly specified or malicious, or if improper safety features are in place, or if the AI decides it would prefer to do something else instead, humans may be unable to control our own creation. Bostrom gives examples of how a seemingly innocuous goal, such as “Make everyone happy,” could be misinterpreted; perhaps the AI decides to drug humanity into a happy stupor, or convert most of the world into computing infrastructure to pursue its goal.
Drexler and Comprehensive AI Services
These are increasingly familiar concerns for an AI that behaves like an agent, seeking to achieve its goal. There are dissenters to this picture of how artificial general intelligence might arise. One notable alternative point of view comes from Eric Drexler, famous for his work on molecular nanotechnology and Engines of Creation, the book that popularized it.
With respect to AI, Drexler believes our view of an artificial intelligence as a single “agent” that acts to maximize a specific goal is too narrow, almost anthropomorphizing AI, or modeling it as a more realistic route towards general intelligence. Instead, he proposes “Comprehensive AI Services” (CAIS) as an alternative route to artificial general intelligence.
What does this mean? Drexler’s argument is that we should look more closely at how machine learning and AI algorithms are actually being developed in the real world. The optimization effort is going into producing algorithms that can provide services and perform tasks like translation, music recommendations, classification, medical diagnoses, and so forth.
AI-driven improvements in technology, argues Drexler, will lead to a proliferation of different algorithms: technology and software improvement, which can automate increasingly more complicated tasks. Recursive improvement in this regime is already occurring—take the newer versions of AlphaGo, which can learn to improve themselves by playing against previous versions.
Many Smart Arms, No Smart Brain
Instead of relying on some unforeseen breakthrough, the CAIS model of AI just assumes that specialized, narrow AI will continue to improve at performing each of its tasks, and the range of tasks that machine learning algorithms will be able to perform will become wider. Ultimately, once a sufficient number of tasks have been automated, the services that an AI will provide will be so comprehensive that they will resemble a general intelligence.
One could then imagine a “general” intelligence as simply an algorithm that is extremely good at matching the task you ask it to perform to the specialized service algorithm that can perform that task. Rather than acting like a single brain that strives to achieve a particular goal, the central AI would be more like a search engine, looking through the tasks it can perform to find the closest match and calling upon a series of subroutines to achieve the goal.
For Drexler, this is inherently a safety feature. Rather than Bostrom’s single, impenetrable, conscious and superintelligent brain (which we must try to psychoanalyze in advance without really knowing what it will look like), we have a network of capabilities. If you don’t want your system to perform certain tasks, you can simply cut it off from access to those services. There is no superintelligent consciousness to outwit or “trap”: more like an extremely high-level programming language that can respond to complicated commands by calling upon one of the myriad specialized algorithms that have been developed by different groups.
This skirts the complex problem of consciousness and all of the sticky moral quandaries that arise in making minds that might be like ours. After all, if you could simulate a human mind, you could simulate it experiencing unimaginable pain. Black Mirror-esque dystopias where emulated minds have no rights and are regularly “erased” or forced to labor in dull and repetitive tasks, hove into view.
Drexler argues that, in this world, there is no need to ever build a conscious algorithm. Yet it seems likely that, at some point, humans will attempt to simulate our own brains, if only in the vain attempt to pursue immortality. This model cannot hold forever. Yet its proponents argue that any world in which we could develop general AI would probably also have developed superintelligent capabilities in a huge range of different tasks, such as computer programming, natural language understanding, and so on. In other words, CAIS arrives first.
The Future In Our Hands?
Drexler argues that his model already incorporates many of the ideas from general AI development. In the marketplace, algorithms compete all the time to perform these services: they undergo the same evolutionary pressures that lead to “higher intelligence,” but the behavior that’s considered superior is chosen by humans, and the nature of the “general intelligence” is far more shaped by human decision-making and human programmers. Development in AI services could still be rapid and disruptive.
But in Drexler’s case, the research and development capacity comes from humans and organizations driven by the desire to improve algorithms that are performing individualized and useful tasks, rather than from a conscious AI recursively reprogramming and improving itself.
In other words, this vision does not absolve us of the responsibility of making our AI safe; if anything, it gives us a greater degree of responsibility. As more and more complex “services” are automated, performing what used to be human jobs at superhuman speed, the economic disruption will be severe.
Equally, as machine learning is trusted to carry out more complex decisions, avoiding algorithmic bias becomes crucial. Shaping each of these individual decision-makers—and trying to predict the complex ways they might interact with each other—is no less daunting a task than specifying the goal for a hypothetical, superintelligent, God-like AI. Arguably, the consequences of the “misalignment” of these services algorithms are already multiplying around us.
The CAIS model bridges the gap between real-world AI, machine learning developments, and real-world safety considerations, as well as the speculative world of superintelligent agents and the safety considerations involved with controlling their behavior. We should keep our minds open as to what form AI and machine learning will take, and how it will influence our societies—and we must take care to ensure that the systems we create don’t end up forcing us all to live in a world of unintended consequences.
Image Credit: MF Production/Shutterstock.com Continue reading
#435127 Teaching AI the Concept of ‘Similar, ...
As a human you instinctively know that a leopard is closer to a cat than a motorbike, but the way we train most AI makes them oblivious to these kinds of relations. Building the concept of similarity into our algorithms could make them far more capable, writes the author of a new paper in Science Robotics.
Convolutional neural networks have revolutionized the field of computer vision to the point that machines are now outperforming humans on some of the most challenging visual tasks. But the way we train them to analyze images is very different from the way humans learn, says Atsuto Maki, an associate professor at KTH Royal Institute of Technology.
“Imagine that you are two years old and being quizzed on what you see in a photo of a leopard,” he writes. “You might answer ‘a cat’ and your parents might say, ‘yeah, not quite but similar’.”
In contrast, the way we train neural networks rarely gives that kind of partial credit. They are typically trained to have very high confidence in the correct label and consider all incorrect labels, whether ”cat” or “motorbike,” equally wrong. That’s a mistake, says Maki, because ignoring the fact that something can be “less wrong” means you’re not exploiting all of the information in the training data.
Even when models are trained this way, there will be small differences in the probabilities assigned to incorrect labels that can tell you a lot about how well the model can generalize what it has learned to unseen data.
If you show a model a picture of a leopard and it gives “cat” a probability of five percent and “motorbike” one percent, that suggests it picked up on the fact that a cat is closer to a leopard than a motorbike. In contrast, if the figures are the other way around it means the model hasn’t learned the broad features that make cats and leopards similar, something that could potentially be helpful when analyzing new data.
If we could boost this ability to identify similarities between classes we should be able to create more flexible models better able to generalize, says Maki. And recent research has demonstrated how variations of an approach called regularization might help us achieve that goal.
Neural networks are prone to a problem called “overfitting,” which refers to a tendency to pay too much attention to tiny details and noise specific to their training set. When that happens, models will perform excellently on their training data but poorly when applied to unseen test data without these particular quirks.
Regularization is used to circumvent this problem, typically by reducing the network’s capacity to learn all this unnecessary information and therefore boost its ability to generalize to new data. Techniques are varied, but generally involve modifying the network’s structure or the strength of the weights between artificial neurons.
More recently, though, researchers have suggested new regularization approaches that work by encouraging a broader spread of probabilities across all classes. This essentially helps them capture more of the class similarities, says Maki, and therefore boosts their ability to generalize.
One such approach was devised in 2017 by Google Brain researchers, led by deep learning pioneer Geoffrey Hinton. They introduced a penalty to their training process that directly punished overconfident predictions in the model’s outputs, and a technique called label smoothing that prevents the largest probability becoming much larger than all others. This meant the probabilities were lower for correct labels and higher for incorrect ones, which was found to boost performance of models on varied tasks from image classification to speech recognition.
Another came from Maki himself in 2017 and achieves the same goal, but by suppressing high values in the model’s feature vector—the mathematical construct that describes all of an object’s important characteristics. This has a knock-on effect on the spread of output probabilities and also helped boost performance on various image classification tasks.
While it’s still early days for the approach, the fact that humans are able to exploit these kinds of similarities to learn more efficiently suggests that models that incorporate them hold promise. Maki points out that it could be particularly useful in applications such as robotic grasping, where distinguishing various similar objects is important.
Image Credit: Marianna Kalashnyk / Shutterstock.com Continue reading
#435098 Coming of Age in the Age of AI: The ...
The first generation to grow up entirely in the 21st century will never remember a time before smartphones or smart assistants. They will likely be the first children to ride in self-driving cars, as well as the first whose healthcare and education could be increasingly turned over to artificially intelligent machines.
Futurists, demographers, and marketers have yet to agree on the specifics of what defines the next wave of humanity to follow Generation Z. That hasn’t stopped some, like Australian futurist Mark McCrindle, from coining the term Generation Alpha, denoting a sort of reboot of society in a fully-realized digital age.
“In the past, the individual had no power, really,” McCrindle told Business Insider. “Now, the individual has great control of their lives through being able to leverage this world. Technology, in a sense, transformed the expectations of our interactions.”
No doubt technology may impart Marvel superhero-like powers to Generation Alpha that even tech-savvy Millennials never envisioned over cups of chai latte. But the powers of machine learning, computer vision, and other disciplines under the broad category of artificial intelligence will shape this yet unformed generation more definitively than any before it.
What will it be like to come of age in the Age of AI?
The AI Doctor Will See You Now
Perhaps no other industry is adopting and using AI as much as healthcare. The term “artificial intelligence” appears in nearly 90,000 publications from biomedical literature and research on the PubMed database.
AI is already transforming healthcare and longevity research. Machines are helping to design drugs faster and detect disease earlier. And AI may soon influence not only how we diagnose and treat illness in children, but perhaps how we choose which children will be born in the first place.
A study published earlier this month in NPJ Digital Medicine by scientists from Weill Cornell Medicine used 12,000 photos of human embryos taken five days after fertilization to train an AI algorithm on how to tell which in vitro fertilized embryo had the best chance of a successful pregnancy based on its quality.
Investigators assigned each embryo a grade based on various aspects of its appearance. A statistical analysis then correlated that grade with the probability of success. The algorithm, dubbed Stork, was able to classify the quality of a new set of images with 97 percent accuracy.
“Our algorithm will help embryologists maximize the chances that their patients will have a single healthy pregnancy,” said Dr. Olivier Elemento, director of the Caryl and Israel Englander Institute for Precision Medicine at Weill Cornell Medicine, in a press release. “The IVF procedure will remain the same, but we’ll be able to improve outcomes by harnessing the power of artificial intelligence.”
Other medical researchers see potential in applying AI to detect possible developmental issues in newborns. Scientists in Europe, working with a Finnish AI startup that creates seizure monitoring technology, have developed a technique for detecting movement patterns that might indicate conditions like cerebral palsy.
Published last month in the journal Acta Pediatrica, the study relied on an algorithm to extract the movements from a newborn, turning it into a simplified “stick figure” that medical experts could use to more easily detect clinically relevant data.
The researchers are continuing to improve the datasets, including using 3D video recordings, and are now developing an AI-based method for determining if a child’s motor maturity aligns with its true age. Meanwhile, a study published in February in Nature Medicine discussed the potential of using AI to diagnose pediatric disease.
AI Gets Classy
After being weaned on algorithms, Generation Alpha will hit the books—about machine learning.
China is famously trying to win the proverbial AI arms race by spending billions on new technologies, with one Chinese city alone pledging nearly $16 billion to build a smart economy based on artificial intelligence.
To reach dominance by its stated goal of 2030, Chinese cities are also incorporating AI education into their school curriculum. Last year, China published its first high school textbook on AI, according to the South China Morning Post. More than 40 schools are participating in a pilot program that involves SenseTime, one of the country’s biggest AI companies.
In the US, where it seems every child has access to their own AI assistant, researchers are just beginning to understand how the ubiquity of intelligent machines will influence the ways children learn and interact with their highly digitized environments.
Sandra Chang-Kredl, associate professor of the department of education at Concordia University, told The Globe and Mail that AI could have detrimental effects on learning creativity or emotional connectedness.
Similar concerns inspired Stefania Druga, a member of the Personal Robots group at the MIT Media Lab (and former Education Teaching Fellow at SU), to study interactions between children and artificial intelligence devices in order to encourage positive interactions.
Toward that goal, Druga created Cognimates, a platform that enables children to program and customize their own smart devices such as Alexa or even a smart, functional robot. The kids can also use Cognimates to train their own AI models or even build a machine learning version of Rock Paper Scissors that gets better over time.
“I believe it’s important to also introduce young people to the concepts of AI and machine learning through hands-on projects so they can make more informed and critical use of these technologies,” Druga wrote in a Medium blog post.
Druga is also the founder of Hackidemia, an international organization that sponsors workshops and labs around the world to introduce kids to emerging technologies at an early age.
“I think we are in an arms race in education with the advancement of technology, and we need to start thinking about AI literacy before patterns of behaviors for children and their families settle in place,” she wrote.
AI Goes Back to School
It also turns out that AI has as much to learn from kids. More and more researchers are interested in understanding how children grasp basic concepts that still elude the most advanced machine minds.
For example, developmental psychologist Alison Gopnik has written and lectured extensively about how studying the minds of children can provide computer scientists clues on how to improve machine learning techniques.
In an interview on Vox, she described that while DeepMind’s AlpahZero was trained to be a chessmaster, it struggles with even the simplest changes in the rules, such as allowing the bishop to move horizontally instead of vertically.
“A human chess player, even a kid, will immediately understand how to transfer that new rule to their playing of the game,” she noted. “Flexibility and generalization are something that even human one-year-olds can do but that the best machine learning systems have a much harder time with.”
Last year, the federal defense agency DARPA announced a new program aimed at improving AI by teaching it “common sense.” One of the chief strategies is to develop systems for “teaching machines through experience, mimicking the way babies grow to understand the world.”
Such an approach is also the basis of a new AI program at MIT called the MIT Quest for Intelligence.
The research leverages cognitive science to understand human intelligence, according to an article on the project in MIT Technology Review, such as exploring how young children visualize the world using their own innate 3D models.
“Children’s play is really serious business,” said Josh Tenenbaum, who leads the Computational Cognitive Science lab at MIT and his head of the new program. “They’re experiments. And that’s what makes humans the smartest learners in the known universe.”
In a world increasingly driven by smart technologies, it’s good to know the next generation will be able to keep up.
Image Credit: phoelixDE / Shutterstock.com Continue reading