Tag Archives: vision

#437598 Video Friday: Sarcos Is Developing a New ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft unfurled its robotic arm Oct. 20, 2020, and in a first for the agency, briefly touched an asteroid to collect dust and pebbles from the surface for delivery to Earth in 2023.

[ NASA ]

New from David Zarrouk’s lab at BGU is AmphiSTAR, which Zarrouk describes as “a kind of a ground-water drone inspired by the cockroaches (sprawling) and by the Basilisk lizard (running over water). The robot hovers due to the collision of its propellers with the water (hydrodynamics not aerodynamics). The robot can crawl and swim at high and low speeds and smoothly transition between the two. It can reach 3.5 m/s on ground and 1.5m/s in water.”

AmphiSTAR will be presented at IROS, starting next week!

[ BGU ]

This is unfortunately not a great video of a video that was taken at a SoftBank Hawks baseball game in Japan last week, but it’s showing an Atlas robot doing an honestly kind of impressive dance routine to support the team.

ロボット応援団に人型ロボット『ATLAS』がアメリカからリモートで緊急参戦!!!
ホークスビジョンの映像をお楽しみ下さい♪#sbhawks #Pepper #spot pic.twitter.com/6aTYn8GGli
— 福岡ソフトバンクホークス(公式) (@HAWKS_official)
October 16, 2020

Editor’s Note: The tweet embed above is not working for some reason—see the video here.

[ SoftBank Hawks ]

Thanks Thomas!

Sarcos is working on a new robot, which looks to be the torso of their powered exoskeleton with the human relocated somewhere else.

[ Sarcos ]

The biggest holiday of the year, International Sloth Day, was on Tuesday! To celebrate, here’s Slothbot!

[ NSF ]

This is one of those simple-seeming tasks that are really difficult for robots.

I love self-resetting training environments.

[ MIT CSAIL ]

The Chiel lab collaborates with engineers at the Center for Biologically Inspired Robotics Research at Case Western Reserve University to design novel worm-like robots that have potential applications in search-and-rescue missions, endoscopic medicine, or other scenarios requiring navigation through narrow spaces.

[ Case Western ]

ANYbotics partnered with Losinger Marazzi to explore ANYmal’s potential of patrolling construction sites to identify and report safety issues. With such a complex environment, only a robot designed to navigate difficult terrain is able to bring digitalization to such a physically demanding industry.

[ ANYbotics ]

Happy 2018 Halloween from Clearpath Robotics!

[ Clearpath ]

Overcoming illumination variance is a critical factor in vision-based navigation. Existing methods tackled this radical illumination variance issue by proposing camera control or high dynamic range (HDR) image fusion. Despite these efforts, we have found that the vision-based approaches still suffer from overcoming darkness. This paper presents real-time image synthesizing from carefully controlled seed low dynamic range (LDR) image, to enable visual simultaneous localization and mapping (SLAM) in an extremely dark environment (less than 10 lux).

[ KAIST ]

What can MoveIt do? Who knows! Let's find out!

[ MoveIt ]

Thanks Dave!

Here we pick a cube from a starting point, manipulate it within the hand, and then put it back. To explore the capabilities of the hand, no sensors were used in this demonstration. The RBO Hand 3 uses soft pneumatic actuators made of silicone. The softness imparts considerable robustness against variations in object pose and size. This lets us design manipulation funnels that work reliably without needing sensor feedback. We take advantage of this reliability to chain these funnels into more complex multi-step manipulation plans.

[ TU Berlin ]

If this was a real solar array, King Louie would have totally cleaned it. Mostly.

[ BYU ]

Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, were demonstrated to have low efficiency, due to the lack of optimality consideration, conservative motion plans and low decision frequencies. In this paper, we propose FUEL, a hierarchical framework that can support Fast UAV ExpLoration in complex unknown environments.

[ HKUST ]

Countless precise repetitions? This is the perfect task for a robot, thought researchers at the University of Liverpool in the Department of Chemistry, and without further ado they developed an automation solution that can carry out and monitor research tasks, making autonomous decisions about what to do next.

[ Kuka ]

This video shows a demonstration of central results of the SecondHands project. In the context of maintenance and repair tasks, in warehouse environments, the collaborative humanoid robot ARMAR-6 demonstrates a number of cognitive and sensorimotor abilities such as 1) recognition of the need of help based on speech, force, haptics and visual scene and action interpretation, 2) collaborative bimanual manipulation of large objects, 3) compliant mobile manipulation, 4) grasping known and unknown objects and tools, 5) human-robot interaction (object and tool handover) 6) natural dialog and 7) force predictive control.

[ SecondHands ]

In celebration of Ada Lovelace Day, Silicon Valley Robotics hosted a panel of Women in Robotics.

[ Robohub ]

As part of the upcoming virtual IROS conference, HEBI robotics is putting together a tutorial on robotics actuation. While I’m sure HEBI would like you to take a long look at their own actuators, we’ve been assured that no matter what kind of actuators you use, this tutorial will still be informative and useful.

[ YouTube ] via [ HEBI Robotics ]

Thanks Dave!

This week’s UMD Lockheed Martin Robotics Seminar comes from Julie Shah at MIT, on “Enhancing Human Capability with Intelligent Machine Teammates.”

Every team has top performers- people who excel at working in a team to find the right solutions in complex, difficult situations. These top performers include nurses who run hospital floors, emergency response teams, air traffic controllers, and factory line supervisors. While they may outperform the most sophisticated optimization and scheduling algorithms, they cannot often tell us how they do it. Similarly, even when a machine can do the job better than most of us, it can’t explain how. In this talk I share recent work investigating effective ways to blend the unique decision-making strengths of humans and machines. I discuss the development of computational models that enable machines to efficiently infer the mental state of human teammates and thereby collaborate with people in richer, more flexible ways.

[ UMD ]

Matthew Piccoli gives a talk to the UPenn GRASP Lab on “Trading Complexities: Smart Motors and Dumb Vehicles.”

We will discuss my research journey through Penn making the world's smallest, simplest flying vehicles, and in parallel making the most complex brushless motors. What do they have in common? We'll touch on why the quadrotor went from an obscure type of helicopter to the current ubiquitous drone. Finally, we'll get into my life after Penn and what tools I'm creating to further drone and robot designs of the future.

[ UPenn ] Continue reading

Posted in Human Robots

#437585 Dart-Shooting Drone Attacks Trees for ...

We all know how robots are great at going to places where you can’t (or shouldn’t) send a human. We also know how robots are great at doing repetitive tasks. These characteristics have the potential to make robots ideal for setting up wireless sensor networks in hazardous environments—that is, they could deploy a whole bunch of self-contained sensor nodes that create a network that can monitor a very large area for a very long time.

When it comes to using drones to set up sensor networks, you’ve generally got two options: A drone that just drops sensors on the ground (easy but inaccurate and limited locations), or using a drone with some sort of manipulator on it to stick sensors in specific places (complicated and risky). A third option, under development by researchers at Imperial College London’s Aerial Robotics Lab, provides the accuracy of direct contact with the safety and ease of use of passive dropping by instead using the drone as a launching platform for laser-aimed, sensor-equipped darts.

These darts (which the researchers refer to as aerodynamically stabilized, spine-equipped sensor pods) can embed themselves in relatively soft targets from up to 4 meters away with an accuracy of about 10 centimeters after being fired from a spring-loaded launcher. They’re not quite as accurate as a drone with a manipulator, but it’s pretty good, and the drone can maintain a safe distance from the surface that it’s trying to add a sensor to. Obviously, the spine is only going to work on things like wood, but the researchers point out that there are plenty of attachment mechanisms that could be used, including magnets, adhesives, chemical bonding, or microspines.

Indoor tests using magnets showed the system to be quite reliable, but at close range (within a meter of the target) the darts sometimes bounced off rather than sticking. From between 1 and 4 meters away, the darts stuck between 90 and 100 percent of the time. Initial outdoor tests were also successful, although the system was under manual control. The researchers say that “regular and safe operations should be carried out autonomously,” which, yeah, you’d just have to deal with all of the extra sensing and hardware required to autonomously fly beneath the canopy of a forest. That’s happening next, as the researchers plan to add “vision state estimation and positioning, as well as a depth sensor” to avoid some trees and fire sensors into others.

And if all of that goes well, they’ll consider trying to get each drone to carry multiple darts. Look out, trees: You’re about to be pierced for science.

“Unmanned Aerial Sensor Placement for Cluttered Environments,” by André Farinha, Raphael Zufferey, Peter Zheng, Sophie F. Armanini, and Mirko Kovac from Imperial College London, was published in IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437571 Video Friday: Snugglebot Is What We All ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
Robotica 2020 – November 10-14, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Bay Area Robotics Symposium – November 20, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Snugglebot is what we all need right now.

[ Snugglebot ]

In his video message on his prayer intention for November, Pope Francis emphasizes that progress in robotics and artificial intelligence (AI) be oriented “towards respecting the dignity of the person and of Creation”.

[ Vatican News ]

KaPOW!

Apparently it's supposed to do that—the disruptor flies off backwards to reduce recoil on the robot, and has its own parachute to keep it from going too far.

[ Ghost Robotics ]

Animals have many muscles, receptors, and neurons which compose feedback loops. In this study, we designed artificial muscles, receptors, and neurons without any microprocessors, or software-based controllers. We imitate the reflexive rule observed in walking experiments of cats, as a result, the Pneumatic Brainless Robot II emerged running motion (a leg trajectory and a gait pattern) through the interaction between the body, the ground, and the artificial reflexes. We envision that the simple reflex circuit we discovered will be a candidate for a minimal model for describing the principles of animal locomotion.

Find the paper, “Brainless Running: A Quasi-quadruped Robot with Decentralized Spinal Reflexes by Solely Mechanical Devices,” on IROS On-Demand.

[ IROS ]

Thanks Yoichi!

I have no idea what these guys are saying, but they're talking about robots that serve chocolate!

The world of experience of the Zotter Schokoladen Manufaktur of managing director Josef Zotter counts more than 270,000 visitors annually. Since March 2019, this world of chocolate in Bergl near Riegersburg in Austria has been enriched by a new attraction: the world's first chocolate and praline robot from KUKA delights young and old alike and serves up chocolate and pralines to guests according to their personal taste.

[ Zotter ]

This paper proposes a systematic solution that uses an unmanned aerial vehicle (UAV) to aggressively and safely track an agile target. The solution properly handles the challenging situations where the intent of the target and the dense environments are unknown to the UAV. The proposed solution is integrated into an onboard quadrotor system. We fully test the system in challenging real-world tracking missions. Moreover, benchmark comparisons validate that the proposed method surpasses the cutting-edge methods on time efficiency and tracking effectiveness.

[ FAST Lab ]

Southwest Research Institute developed a cable management system for collaborative robotics, or “cobots.” Dress packs used on cobots can create problems when cables are too tight (e-stops) or loose (tangling). SwRI developed ADDRESS, or the Adaptive DRESing System, to provide smarter cobot dress packs that address e-stops and tangling.

[ SWRI ]

A quick demonstration of the acoustic contact sensor in the RBO Hand 2. An embedded microphone records the sound inside of the pneumatic finger. Depending on which part of the finger makes contact, the sound is a little bit different. We create a sensor that recognizes these small changes and predicts the contact location from the sound. The visualization on the left shows the recorded sound (top) and which of the nine contact classes the sensor is currently predicting (bottom).

[ TU Berlin ]

The MAVLab won the prize for the “most innovative design” in the IMAV 2018 indoor competition, in which drones had to fly through windows, gates, and follow a predetermined flight path. The prize was awarded for the demonstration of a fully autonomous version of the “DelFly Nimble”, a tailless flapping wing drone.

In order to fly by itself, the DelFly Nimble was equipped with a single, small camera and a small processor allowing onboard vision processing and control. The jury of international experts in the field praised the agility and autonomous flight capabilities of the DelFly Nimble.

[ MAVLab ]

A reactive walking controller for the Open Dynamic Robot Initiative's skinny quadruped.

[ ODRI ]

Mobile service robots are already able to recognize people and objects while navigating autonomously through their operating environments. But what is the ideal position of the robot to interact with a user? To solve this problem, Fraunhofer IPA developed an approach that connects navigation, 3D environment modeling, and person detection to find the optimal goal pose for HRI.

[ Fraunhofer ]

Yaskawa has been in robotics for a very, very long time.

[ Yaskawa ]

Black in Robotics IROS launch event, featuring Carlotta Berry.

[ Black in Robotics ]

What is AI? I have no idea! But these folks have some opinions.

[ MIT ]

Aerial-based Observations of Volcanic Emissions (ABOVE) is an international collaborative project that is changing the way we sample volcanic gas emissions. Harnessing recent advances in drone technology, unoccupied aerial systems (UAS) in the ABOVE fleet are able to acquire aerial measurements of volcanic gases directly from within previously inaccessible volcanic plumes. In May 2019, a team of 30 researchers undertook an ambitious field deployment to two volcanoes – Tavurvur (Rabaul) and Manam in Papua New Guinea – both amongst the most prodigious emitters of sulphur dioxide on Earth, and yet lacking any measurements of how much carbon they emit to the atmosphere.

[ ABOVE ]

A talk from IHMC's Robert Griffin for ICCAS 2020, including a few updates on their Nadia humanoid.

[ IHMC ] Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots

#437491 3.2 Billion Images and 720,000 Hours of ...

Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.

Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”

The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.

A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours

In the video, Biden says “Hello, Minnesota.”

The event did indeed happen in MN — signs on stage read MN

But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v

— Donie O'Sullivan (@donie) November 1, 2020

If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?

While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.

Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.

For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.

Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.

Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.

Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr

— Dope Historic Pics (@dopehistoricpic) December 20, 2013

This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.

In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.

“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.

This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5

— Willie's Reserve (@WilliesReserve) January 21, 2019

Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.

Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.

You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a

— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020

Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.

Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh

— EVC Music (@EVCMusicUK) January 6, 2020

Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.

Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.

These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY

Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.

We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.

Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP

But what about edits that only alter pixel values such as color, saturation, or contrast?

One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”

Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).

Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.

Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:

Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.

Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.

Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”

Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.

Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.

If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.

The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:

Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?

Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Simon Steinberger from Pixabay Continue reading

Posted in Human Robots