Tag Archives: virtual

#433288 The New AI Tech Turning Heads in Video ...

A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”

An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.

The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.

In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.

The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.

“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”

AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.

In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.

A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.

A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.

The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.

Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.

“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.

Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.

To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.

The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.

“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.

Image Credit: Tancha / Shutterstock.com Continue reading

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#433278 Outdated Evolution: Updating Our ...

What happens when evolution shapes an animal for tribes of 150 primitive individuals living in a chaotic jungle, and then suddenly that animal finds itself living with millions of others in an engineered metropolis, their pockets all bulging with devices of godlike power?

The result, it seems, is a modern era of tension where archaic forms of governance struggle to keep up with the technological advances of their citizenry, where governmental policies act like constraining bottlenecks rather than spearheads of progress.

Simply put, our governments have failed to adapt to disruptive technologies. And if we are to regain our stability moving forward into a future of even greater disruption, it’s imperative that we understand the issues that got us into this situation and what kind of solutions we can engineer to overcome our governmental weaknesses.

Hierarchy vs. Technological Decentralization
Many of the greatest issues our governments face today come from humanity’s biologically-hardwired desire for centralized hierarchies. This innate proclivity towards building and navigating systems of status and rank were evolutionary gifts handed down to us by our ape ancestors, where each member of a community had a mental map of their social hierarchy. Their nervous systems behaved differently depending on their rank in this hierarchy, influencing their interactions in a way that ensured only the most competent ape would rise to the top to gain access to the best food and mates.

As humanity emerged and discovered the power of language, we continued this practice by ensuring that those at the top of the hierarchies, those with the greatest education and access to information, were the dominant decision-makers for our communities.

However, this kind of structured chain of power is only necessary if we’re operating in conditions of scarcity. But resources, including information, are no longer scarce.

It’s estimated that more than two-thirds of adults in the world now own a smartphone, giving the average citizen the same access to the world’s information as the leaders of our governments. And with global poverty falling from 35.5 percent to 10.9 percent over the last 25 years, our younger generations are growing up seeing automation and abundance as a likely default, where innovations like solar energy, lab-grown meat, and 3D printing are expected to become commonplace.

It’s awareness of this paradigm shift that has empowered the recent rise of decentralization. As information and access to resources become ubiquitous, there is noticeably less need for our inefficient and bureaucratic hierarchies.

For example, if blockchain can prove its feasibility for large-scale systems, it can be used to update and upgrade numerous applications to a decentralized model, including currency and voting. Such innovations would lower the risk of failing banks collapsing the economy like they did in 2008, as well as prevent corrupt politicians from using gerrymandering and long queues at polling stations to deter voter participation.

Of course, technology isn’t a magic wand that should be implemented carelessly. Facebook’s “move fast and break things” approach might have very possibly broken American democracy in 2016, as social media played on some of the worst tendencies humanity can operate on during an election: fear and hostility.

But if decentralized technology, like blockchain’s public ledgers, can continue to spread a sense of security and transparency throughout society, perhaps we can begin to quiet that paranoia and hyper-vigilance our brains evolved to cope with living as apes in dangerous jungles. By decentralizing our power structures, we take away the channels our outdated biological behaviors might use to enact social dominance and manipulation.

The peace of mind this creates helps to reestablish trust in our communities and in our governments. And with trust in the government increased, it’s likely we’ll see our next issue corrected.

From Business and Law to Science and Technology
A study found that 59 percent of US presidents, 68 percent of vice presidents, and 78 percent of secretaries of state were lawyers by education and occupation. That’s more than one out of every two people in the most powerful positions in the American government restricted to a field dedicated to convincing other people (judges) their perspective is true, even if they lack evidence.

And so the scientific method became less important than semantics to our leaders.

Similarly, of the 535 individuals in the American congress, only 24 hold a PhD, only 2 of which are in a STEM field. And so far, it’s not getting better: Trump is the first president since WWII not to name a science advisor.

But if we can use technologies like blockchain to increase transparency, efficiency, and trust in the government, then the upcoming generations who understand decentralization, abundance, and exponential technologies might feel inspired enough to run for government positions. This helps solve that common problem where the smartest and most altruistic people tend to avoid government positions because they don’t want to play the semantic and deceitful game of politics.

By changing this narrative, our governments can begin to fill with techno-progressive individuals who actually understand the technologies that are rapidly reshaping our reality. And this influence of expertise is going to be crucial as our governments are forced to restructure and create new policies to accommodate the incoming disruption.

Clearing Regulations to Begin Safe Experimentation
As exponential technologies become more ubiquitous, we’re likely going to see young kids and garage tinkerers creating powerful AIs and altering genetics thanks to tools like CRISPR and free virtual reality tutorials.

This easy accessibility to such powerful technology means unexpected and rapid progress can occur almost overnight, quickly overwhelming our government’s regulatory systems.

Uber and Airbnb are two of the best examples of our government’s inability to keep up with such technology, both companies achieving market dominance before regulators were even able to consider how to handle them. And when a government has decided against them, they often still continue to operate because people simply choose to keep using the apps.

Luckily, this kind of disruption hasn’t yet posed a major existential threat. But this will change when we see companies begin developing cyborg body parts, brain-computer interfaces, nanobot health injectors, and at-home genetic engineering kits.

For this reason, it’s crucial that we have experts who understand how to update our regulations to be as flexible as is necessary to ensure we don’t create black market conditions like we’ve done with drugs. It’s better to have safe and monitored experimentation, rather than forcing individuals into seedy communities using unsafe products.

Survival of the Most Adaptable
If we hope to be an animal that survives our changing environment, we have to adapt. We cannot cling to the behaviors and systems formed thousands of years ago. We must instead acknowledge that we now exist in an ecosystem of disruptive technology, and we must evolve and update our governments if they’re going to be capable of navigating these transformative impacts.

Image Credit: mmatee / Shutterstock.com Continue reading

Posted in Human Robots

#432891 This Week’s Awesome Stories From ...

TRANSPORTATION
Elon Musk Presents His Tunnel Vision to the People of LA
Jack Stewart and Aarian Marshall | Wired
“Now, Musk wants to build this new, 2.1-mile tunnel, near LA’s Sepulveda pass. It’s all part of his broader vision of a sprawling network that could take riders from Sherman Oaks in the north to Long Beach Airport in the south, Santa Monica in the west to Dodger Stadium in the east—without all that troublesome traffic.”

ROBOTICS
Feel What This Robot Feels Through Tactile Expressions
Evan Ackerman | IEEE Spectrum
“Guy Hoffman’s Human-Robot Collaboration & Companionship (HRC2) Lab at Cornell University is working on a new robot that’s designed to investigate this concept of textural communication, which really hasn’t been explored in robotics all that much. The robot uses a pneumatically powered elastomer skin that can be dynamically textured with either goosebumps or spikes, which should help it communicate more effectively, especially if what it’s trying to communicate is, ‘Don’t touch me!’”

VIRTUAL REALITY
In Virtual Reality, How Much Body Do You Need?
Steph Yin | The New York Times
“In a paper published Tuesday in Scientific Reports, they showed that animating virtual hands and feet alone is enough to make people feel their sense of body drift toward an invisible avatar. Their work fits into a corpus of research on illusory body ownership, which has challenged understandings of perception and contributed to therapies like treating pain for amputees who experience phantom limb.”

MEDICINE
How Graphene and Gold Could Help Us Test Drugs and Monitor Cancer
Angela Chen | The Verge
“In today’s study, scientists learned to precisely control the amount of electricity graphene generates by changing how much light they shine on the material. When they grew heart cells on the graphene, they could manipulate the cells too, says study co-author Alex Savtchenko, a physicist at the University of California, San Diego. They could make it beat 1.5 times faster, three times faster, 10 times faster, or whatever they needed.”

DISASTER RELIEF
Robotic Noses Could Be the Future of Disaster Rescue—If They Can Outsniff Search Dogs
Eleanor Cummins | Popular Science
“While canine units are a tried and fairly true method for identifying people trapped in the wreckage of a disaster, analytical chemists have for years been working in the lab to create a robotic alternative. A synthetic sniffer, they argue, could potentially prove to be just as or even more reliable than a dog, more resilient in the face of external pressures like heat and humidity, and infinitely more portable.”

Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#432880 Google’s Duplex Raises the Question: ...

By now, you’ve probably seen Google’s new Duplex software, which promises to call people on your behalf to book appointments for haircuts and the like. As yet, it only exists in demo form, but already it seems like Google has made a big stride towards capturing a market that plenty of companies have had their eye on for quite some time. This software is impressive, but it raises questions.

Many of you will be familiar with the stilted, robotic conversations you can have with early chatbots that are, essentially, glorified menus. Instead of pressing 1 to confirm or 2 to re-enter, some of these bots would allow for simple commands like “Yes” or “No,” replacing the buttons with limited ability to recognize a few words. Using them was often a far more frustrating experience than attempting to use a menu—there are few things more irritating than a robot saying, “Sorry, your response was not recognized.”

Google Duplex scheduling a hair salon appointment:

Google Duplex calling a restaurant:

Even getting the response recognized is hard enough. After all, there are countless different nuances and accents to baffle voice recognition software, and endless turns of phrase that amount to saying the same thing that can confound natural language processing (NLP), especially if you like your phrasing quirky.

You may think that standard customer-service type conversations all travel the same route, using similar words and phrasing. But when there are over 80,000 ways to order coffee, and making a mistake is frowned upon, even simple tasks require high accuracy over a huge dataset.

Advances in audio processing, neural networks, and NLP, as well as raw computing power, have meant that basic recognition of what someone is trying to say is less of an issue. Soundhound’s virtual assistant prides itself on being able to process complicated requests (perhaps needlessly complicated).

The deeper issue, as with all attempts to develop conversational machines, is one of understanding context. There are so many ways a conversation can go that attempting to construct a conversation two or three layers deep quickly runs into problems. Multiply the thousands of things people might say by the thousands they might say next, and the combinatorics of the challenge runs away from most chatbots, leaving them as either glorified menus, gimmicks, or rather bizarre to talk to.

Yet Google, who surely remembers from Glass the risk of premature debuts for technology, especially the kind that ask you to rethink how you interact with or trust in software, must have faith in Duplex to show it on the world stage. We know that startups like Semantic Machines and x.ai have received serious funding to perform very similar functions, using natural-language conversations to perform computing tasks, schedule meetings, book hotels, or purchase items.

It’s no great leap to imagine Google will soon do the same, bringing us closer to a world of onboard computing, where Lens labels the world around us and their assistant arranges it for us (all the while gathering more and more data it can convert into personalized ads). The early demos showed some clever tricks for keeping the conversation within a fairly narrow realm where the AI should be comfortable and competent, and the blog post that accompanied the release shows just how much effort has gone into the technology.

Yet given the privacy and ethics funk the tech industry finds itself in, and people’s general unease about AI, the main reaction to Duplex’s impressive demo was concern. The voice sounded too natural, bringing to mind Lyrebird and their warnings of deepfakes. You might trust “Do the Right Thing” Google with this technology, but it could usher in an era when automated robo-callers are far more convincing.

A more human-like voice may sound like a perfectly innocuous improvement, but the fact that the assistant interjects naturalistic “umm” and “mm-hm” responses to more perfectly mimic a human rubbed a lot of people the wrong way. This wasn’t just a voice assistant trying to sound less grinding and robotic; it was actively trying to deceive people into thinking they were talking to a human.

Google is running the risk of trying to get to conversational AI by going straight through the uncanny valley.

“Google’s experiments do appear to have been designed to deceive,” said Dr. Thomas King of the Oxford Internet Institute’s Digital Ethics Lab, according to Techcrunch. “Their main hypothesis was ‘can you distinguish this from a real person?’ In this case it’s unclear why their hypothesis was about deception and not the user experience… there should be some kind of mechanism there to let people know what it is they are speaking to.”

From Google’s perspective, being able to say “90 percent of callers can’t tell the difference between this and a human personal assistant” is an excellent marketing ploy, even though statistics about how many interactions are successful might be more relevant.

In fact, Duplex runs contrary to pretty much every major recommendation about ethics for the use of robotics or artificial intelligence, not to mention certain eavesdropping laws. Transparency is key to holding machines (and the people who design them) accountable, especially when it comes to decision-making.

Then there are the more subtle social issues. One prominent effect social media has had is to allow people to silo themselves; in echo chambers of like-minded individuals, it’s hard to see how other opinions exist. Technology exacerbates this by removing the evolutionary cues that go along with face-to-face interaction. Confronted with a pair of human eyes, people are more generous. Confronted with a Twitter avatar or a Facebook interface, people hurl abuse and criticism they’d never dream of using in a public setting.

Now that we can use technology to interact with ever fewer people, will it change us? Is it fair to offload the burden of dealing with a robot onto the poor human at the other end of the line, who might have to deal with dozens of such calls a day? Google has said that if the AI is in trouble, it will put you through to a human, which might help save receptionists from the hell of trying to explain a concept to dozens of dumbfounded AI assistants all day. But there’s always the risk that failures will be blamed on the person and not the machine.

As AI advances, could we end up treating the dwindling number of people in these “customer-facing” roles as the buggiest part of a fully automatic service? Will people start accusing each other of being robots on the phone, as well as on Twitter?

Google has provided plenty of reassurances about how the system will be used. They have said they will ensure that the system is identified, and it’s hardly difficult to resolve this problem; a slight change in the script from their demo would do it. For now, consumers will likely appreciate moves that make it clear whether the “intelligent agents” that make major decisions for us, that we interact with daily, and that hide behind social media avatars or phone numbers are real or artificial.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots