Tag Archives: virtual reality

#438809 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
Facebook’s New AI Teaches Itself to See With Less Human Help
Will Knight | Wired
“Peer inside an AI algorithm and you’ll find something constructed using data that was curated and labeled by an army of human workers. Now, Facebook has shown how some AI algorithms can learn to do useful work with far less human help. The company built an algorithm that learned to recognize objects in images with little help from labels.”

CULTURE
New AI ‘Deep Nostalgia’ Brings Old Photos, Including Very Old Ones, to Life
Kim Lyons | The Verge
“The Deep Nostalgia service, offered by online genealogy company MyHeritage, uses AI licensed from D-ID to create the effect that a still photo is moving. It’s kinda like the iOS Live Photos feature, which adds a few seconds of video to help smartphone photographers find the best shot. But Deep Nostalgia can take photos from any camera and bring them to ‘life.’i”

COMPUTING
Could ‘Topological Materials’ Be a New Medium For Ultra-Fast Electronics?
Charles Q. Choi | IEEE Spectrum
“Potential future transistors that can exceed Moore’s law may rely on exotic materials called ‘topological matter’ in which electricity flows across surfaces only, with virtually no dissipation of energy. And now new findings suggest these special topological materials might one day find use in high-speed, low-power electronics and in quantum computers.”

ENERGY
A Chinese Province Could Ban Bitcoin Mining to Cut Down Energy Use
Dharna Noor | Gizmodo
“Since energy prices in Inner Mongolia are particularly low, many bitcoin miners have set up shop there specifically. The region is the third-largest mining site in China. Because the grid is heavily coal-powered, however, that’s led to skyrocketing emissions, putting it in conflict with President Xi Jinping’s promise last September to have China reach peak carbon emissions by 2030 at the latest and achieve carbon neutrality before 2060.”

VIRTUAL REALITY
Mesh Is Microsoft’s Vision for Sending Your Hologram Back to the Office
Sam Rutherford | Gizmodo
“With Mesh, Microsoft is hoping to create a virtual environment capable of sharing data, 3D models, avatars, and more—basically, the company wants to upgrade the traditional remote-working experience with the power of AR and VR. In the future, Microsoft is planning for something it’s calling ‘holoportation,’ which will allow Mesh devices to create photorealistic digital avatars of your body that can appear in virtual spaces anywhere in the world—assuming you’ve been invited, of course.”

SPACE
Rocket Lab Could Be SpaceX’s Biggest Rival
Neel V. Patel | MIT Technology Review
“At 40 meters tall and able to carry 20 times the weight that Electron can, [the new] Neutron [rocket] is being touted by Rocket Lab as its entry into markets for large satellite and mega-constellation launches, as well as future robotics missions to the moon and Mars. Even more tantalizing, Rocket Lab says Neutron will be designed for human spaceflight as well.”

SCIENCE
Can Alien Smog Lead Us to Extraterrestrial Civilizations?
Meghan Herbst | Wired
“Kopparapu is at the forefront of an emerging field in astronomy that is aiming to identify technosignatures, or technological markers we can search for in the cosmos. No longer conceptually limited to radio signals, astronomers are looking for ways we could identify planets or other spacefaring objects by looking for things like atmospheric gases, lasers, and even hypothetical sun-encircling structures called Dyson spheres.”

DIGITAL CURRENCIES
China Charges Ahead With a National Digital Currency
Nathaniel Popper and Cao Li | The New York Times
“China has charged ahead with a bold effort to remake the way that government-backed money works, rolling out its own digital currency with different qualities than cash or digital deposits. The country’s central bank, which began testing eCNY last year in four cities, recently expanded those trials to bigger cities such as Beijing and Shanghai, according to government presentations.”

Image Credit: Leon Seibert / Unsplash Continue reading

Posted in Human Robots

#438731 Video Friday: Perseverance Lands on Mars

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Hmm, did anything interesting happen in robotics yesterday week?

Obviously, we're going to have tons more on the Mars Rover and Mars Helicopter over the next days, weeks, months, years, and (if JPL's track record has anything to say about it) decades. Meantime, here's what's going to happen over the next day or two:

[ Mars 2020 ]

PLEN hopes you had a happy Valentine's Day!

[ PLEN ]

Unitree dressed up a whole bunch of Laikago quadrupeds to take part in the 2021 Spring Festival Gala in China.

[ Unitree ]

Thanks Xingxing!

Marine iguanas compete for the best nesting sites on the Galapagos Islands. Meanwhile RoboSpy Iguana gets involved in a snot sneezing competition after the marine iguanas return from the sea.

[ Spy in the Wild ]

Tails, it turns out, are useful for almost everything.

[ DART Lab ]

Partnered with MD-TEC, this video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.

[ Extend Robotics ]

Fotokite is a safe, practical way to do local surveillance with a drone.

I just wish they still had a consumer version 🙁

[ Fotokite ]

How to confuse fish.

[ Harvard ]

Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.

[ Army ]

Flexiv's new RIZON 10 robot hopes you had a happy Valentine's Day!

[ Flexiv ]

Thanks Yunfan!

An inchworm-inspired crawling robot (iCrawl) is a 5 DOF robot with two legs; each with an electromagnetic foot to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The robot has the ability to crawl on the metal pipes of various curvatures in horizontal and vertical directions. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.

[ Paper ]

Thanks Poramate!

A short film about Robot Wars from Blender Magazine in 1995.

[ YouTube ]

While modern cameras provide machines with a very well-developed sense of vision, robots still lack such a comprehensive solution for their sense of touch. The talk will present examples of why the sense of touch can prove crucial for a wide range of robotic applications, and a tech demo will introduce a novel sensing technology targeting the next generation of soft robotic skins. The prototype of the tactile sensor developed at ETH Zurich exploits the advances in camera technology to reconstruct the forces applied to a soft membrane. This technology has the potential to revolutionize robotic manipulation, human-robot interaction, and prosthetics.

[ ETHZ ]

Thanks Markus!

Quadrupedal robotics has reached a level of performance and maturity that enables some of the most advanced real-world applications with autonomous mobile robots. Driven by excellent research in academia and industry all around the world, a growing number of platforms with different skills target different applications and markets. We have invited a selection of experts with long-standing experience in this vibrant research area

[ IFRR ]

Thanks Fan!

Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. This panel will discuss how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.

[ IFRR ]

At Skydio, we ship autonomous robots that are flown at scale in complex, unknown environments every day. We’ve invested six years of R&D into handling extreme visual scenarios not typically considered by academia nor encountered by cars, ground robots, or AR applications. Drones are commonly in scenes with few or no semantic priors on the environment and must deftly navigate thin objects, extreme lighting, camera artifacts, motion blur, textureless surfaces, vibrations, dirt, smudges, and fog. These challenges are daunting for classical vision, because photometric signals are simply inconsistent. And yet, there is no ground truth for direct supervision of deep networks. We’ll take a detailed look at these issues and how we’ve tackled them to push the state of the art in visual inertial navigation, obstacle avoidance, rapid trajectory planning. We will also cover the new capabilities on top of our core navigation engine to autonomously map complex scenes and capture all surfaces, by performing real-time 3D reconstruction across multiple flights.

[ UPenn ] Continue reading

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots