Tag Archives: videos
#437789 Video Friday: Robotic Glove Features ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Evidently, the folks at Unitree were paying attention to last week’s Video Friday.
[ Unitree ]
RoboSoft 2020 was a virtual conference this year (along with everything else), but they still held a soft robots contest, and here are four short vids—you can watch the rest of them here.
[ RoboSoft 2020 ]
If you were wondering why SoftBank bought Aldebaran Robotics and Boston Dynamics, here’s the answer.
I am now a Hawks fan. GO HAWKS!
[ Softbank Hawks ] via [ RobotStart ]
Scientists at the University of Liverpool have developed a fully autonomous mobile robot to assist them in their research. Using a type of AI, the robot has been designed to work uninterrupted for weeks at a time, allowing it to analyse data and make decisions on what to do next. Using a flexible arm with customised gripper it can be calibrated to interact with most standard lab equipment and machinery as well as navigate safely around human co-workers and obstacles.
[ Nature ]
Oregon State’s Cassie has been on break for a couple of months, but it’s back in the lab and moving alarmingly quickly.
[ DRL ]
The current situation linked to COVID-19 sadly led to the postponing of this year RoboCup 2020 at Bordeaux. As an official sponsor of The RoboCup, SoftBank Robotics wanted to take this opportunity to thank all RoboCupers and The RoboCup Federation for their support these past 13 years. We invite you to take a look at NAO’s adventure at The RoboCup as the official robot of the Standard Platform League. See you in Bordeaux 2021!
[ RoboCup 2021 ]
Miniature SAW robot crawling inside the intestines of a pig. You’re welcome.
[ Zarrouk Lab ]
The video demonstrates fast autonomous flight experiments in cluttered unknown environments, with the support of a robust and perception-aware replanning framework called RAPTOR. The associated paper is submitted to TRO.
[ HKUST ]
Since we haven’t gotten autonomy quite right yet, there’s a lot of telepresence going on for robots that operate in public spaces. Usually, you’ve got one remote human managing multiple robots, so it would be nice to make that interface a little more friendly, right?
[ HCI Lab ]
Arguable whether or not this is a robot, but it’s cool enough to spend a minute watching.
[ Ishikawa Lab ]
Communication is critical to collaboration; however, too much of it can degrade performance. Motivated by the need for effective use of a robot’s communication modalities, in this work, we present a computational framework that decides if, when, and what to communicate during human-robot collaboration.
[ Interactive Robotics ]
Robotiq has released the next generation of the grippers for collaborative robots: the 2F-85 and 2F-140. Both models gain greater robustness, safety, and customizability while retaining the same key benefits that have inspired thousands of manufacturers to choose them since their launch 6 years ago.
[ Robotiq ]
ANYmal C, the autonomous legged robot designed for industrial challenging environments, provides the mobility, autonomy and inspection intelligence to enable safe and efficient inspection operations. In this virtual showcase, discover how ANYmal climbs stairs, recovers from a fall, performs an autonomous mission and avoids obstacles, docks to charge by itself, digitizes analogue sensors and monitors the environment.
[ ANYbotics ]
At Waymo, we are committed to addressing inequality, and we believe listening is a critical first step toward driving positive change. Earlier this year, five Waymonauts sat down to share their thoughts on equity at work, challenging the status quo, and more. This is what they had to say.
[ Waymo ]
Nice of ABB to take in old robots and upgrade them to turn them into new robots again. Robots forever!
[ ABB ]
It’s nice seeing the progress being made by GITAI, one of the teams competing in the ANA Avatar XPRIZE Challenge, and also meet the humans behind the robots.
[ GITAI ] via [ XPRIZE ]
One more talk from the ICRA Legged Robotics Workshop: Jingyu Liu from DeepRobotics and Qiuguo Zhu from Zhejiang University.
[ Deep Robotics ] Continue reading →
#437776 Video Friday: This Terrifying Robot Will ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.
The Aigency, which created the FitBot launch video below, is “the world’s first talent management resource for robotic personalities.”
Robots will be playing a bigger role in our lives in the future. By learning to speak their language and work with them now, we can make this future better for everybody. If you’re a creator that’s producing content to entertain and educate people, robots can be a part of that. And we can help you. Robotic actors can show up alongside the rest of your actors.
The folks at Aigency have put together a compilation reel of clips they’ve put on TikTok, which is nice of them, because some of us don’t know how to TikTok because we’re old and boring.
Do googly eyes violate the terms and conditions?
[ Aigency ]
Shane Wighton of the “Stuff Made Here” YouTube channel, who you might remember from that robotic basketball hoop, has a new invention: A haircut robot. This is not the the first barber bot, but previous designs typically used hair clippers. Shane wanted his robot to use scissors. Hilarious and terrifying at once.
[ Stuff Made Here ]
Starting in October of 2016, Prof. Charlie Kemp and Henry M. Clever invented a new kind of robot. They named the prototype NewRo. In March of 2017, Prof. Kemp filmed this video of Henry operating NewRo to perform a number of assistive tasks. While visiting the Bay Area for a AAAI Symposium workshop at Stanford, Prof. Kemp showed this video to a select group of people to get advice, including Dr. Aaron Edsinger. In August of 2017, Dr. Edsinger and Dr. Kemp founded Hello Robot Inc. to commercialize this patent pending assistive technology. Hello Robot Inc. licensed the intellectual property (IP) from Georgia Tech. After three years of stealthy effort, Hello Robot Inc. revealed Stretch, a new kind of robot!
[ Georgia Tech ]
NASA’s Ingenuity Mars Helicopter will make history's first attempt at powered flight on another planet next spring. It is riding with the agency's next mission to Mars (the Mars 2020 Perseverance rover) as it launches from Cape Canaveral Air Force Station later this summer. Perseverance, with Ingenuity attached to its belly, will land on Mars February 18, 2021.
[ JPL ]
For humans, it can be challenging to manipulate thin flexible objects like ropes, wires, or cables. But if these problems are hard for humans, they are nearly impossible for robots. As a cable slides between the fingers, its shape is constantly changing, and the robot’s fingers must be constantly sensing and adjusting the cable’s position and motion. A group of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and from the MIT Department of Mechanical Engineering pursued the task from a different angle, in a manner that more closely mimics us humans. The team’s new system uses a pair of soft robotic grippers with high-resolution tactile sensors (and no added mechanical constraints) to successfully manipulate freely moving cables.
The team observed that it was difficult to pull the cable back when it reached the edge of the finger, because of the convex surface of the GelSight sensor. Therefore, they hope to improve the finger-sensor shape to enhance the overall performance. In the future, they plan to study more complex cable manipulation tasks such as cable routing and cable inserting through obstacles, and they want to eventually explore autonomous cable manipulation tasks in the auto industry.
[ MIT ]
Gripping robots typically have troubles grabbing transparent or shiny objects. A new technique by Carnegie Mellon University relies on color camera system and machine learning to recognize shapes based on color.
[ CMU ]
A new robotic prosthetic leg prototype offers a more natural, comfortable gait while also being quieter and more energy efficient than other designs. The key is the use of new small and powerful motors with fewer gears, borrowed from the space industry. This streamlined technology enables a free-swinging knee and regenerative braking, which charges the battery during use with energy that would typically be dissipated when the foot hits the ground. This feature enables the leg to more than double a typical prosthetic user's walking needs with one charge per day.
[ University of Michigan ]
Thanks Kate!
This year’s Wonder League teams have been put to the test not only with the challenges set forth by Wonder Workshop and Cartoon Network as they look to help the creek kids from Craig of the Creek solve the greatest mystery of all – the quest for the Lost Realm but due to forces outside their control. With a global pandemic displacing many teams from one another due to lockdowns and quarantines, these teams continued to push themselves to find new ways to work together, solve problems, communicate more effectively, and push themselves to complete a journey that they started and refused to give up on. We at Wonder Workshop are humbled and in awe of all these teams have accomplished.
[ Wonder Workshop ]
Thanks Nicole!
Meet Colin Creager, a mechanical engineer at NASA's Glenn Research Center. Colin is focusing on developing tires that can be used on other worlds. These tires use coil springs made of a special shape memory alloy that will let rovers move across sharp jagged rocks or through soft sand on the Moon or Mars.
[ NASA ]
To be presented at IROS this year, “the first on robot collision detection system using low cost microphones.”
[ Rutgers ]
Robot and mechanism designs inspired by the art of Origami have the potential to generate compact, deployable, lightweight morphing structures, as seen in nature, for potential applications in search-and-rescue, aerospace systems, and medical devices. However, it is challenging to obtain actuation that is easily patternable, reversible, and made with a scalable manufacturing process for origami-inspired self-folding machines. In this work, we describe an approach to design reversible self-folding machines using liquid crystal elastomer (LCE), that contracts when heated, as an artificial muscle.
[ UCSD ]
Just in case you need some extra home entertainment, and you’d like cleaner floors at the same time.
[ iRobot ]
Sure, toss it from a drone. Or from orbit. Whatever, it’s squishy!
[ Squishy Robotics ]
The [virtual] RSS conference this week featured an excellent lineup of speakers and panels, and the best part about it being virtual is that you can watch them all at your leisure! Here’s what’s been posted so far:
[ RSS 2020 ]
Lockheed Martin Robotics Seminar: Toward autonomous flying insect-sized robots: recent results in fabrication, design, power systems, control, and sensing with Sawyer Fuller.
[ UMD ]
In this episode of the AI Podcast, Lex interviews Sergey Levine.
[ AI Podcast ] Continue reading →
#437765 Video Friday: Massive Robot Joins ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Here are some professional circus artists messing around with an industrial robot for fun, like you do.
The acrobats are part of Östgötateatern, a Swedish theatre group, and the chair bit got turned into its own act, called “The Last Fish.” But apparently the Swedish Work Environment Authority didn’t like that an industrial robot—a large ABB robotic arm—was being used in an artistic performance, arguing that the same safety measures that apply in a factory setting would apply on stage. In other words, the robot had to operate inside a protective cage and humans could not physically interact with it.
When told that their robot had to be removed, the acrobats went to court. And won! At least that’s what we understand from this Swedish press release. The court in Linköping, in southern Sweden, ruled that the safety measures taken by the theater had been sufficient. The group had worked with a local robotics firm, Dyno Robotics, to program the manipulator and learn how to interact with it as safely as possible. The robot—which the acrobats say is the eighth member of their troupe—will now be allowed to return.
[ Östgötateatern ]
Houston Mechathronics’ Aquanaut continues to be awesome, even in the middle of a pandemic. It’s taken the big step (big swim?) out of NASA’s swimming pool and into open water.
[ HMI ]
Researchers from Carnegie Mellon University and Facebook AI Research have created a navigation system for robots powered by common sense. The technique uses machine learning to teach robots how to recognize objects and understand where they’re likely to be found in house. The result allows the machines to search more strategically.
[ CMU ]
Cassie manages 2.1 m/s, which is uncomfortably fast in a couple of different ways.
Next, untethered. After that, running!
[ Michigan Robotics ]
Engineers at Caltech have designed a new data-driven method to control the movement of multiple robots through cluttered, unmapped spaces, so they do not run into one another.
Multi-robot motion coordination is a fundamental robotics problem with wide-ranging applications that range from urban search and rescue to the control of fleets of self-driving cars to formation-flying in cluttered environments. Two key challenges make multi-robot coordination difficult: first, robots moving in new environments must make split-second decisions about their trajectories despite having incomplete data about their future path; second, the presence of larger numbers of robots in an environment makes their interactions increasingly complex (and more prone to collisions).
To overcome these challenges, Soon-Jo Chung, Bren Professor of Aerospace, and Yisong Yue, professor of computing and mathematical sciences, along with Caltech graduate student Benjamin Rivière (MS ’18), postdoctoral scholar Wolfgang Hönig, and graduate student Guanya Shi, developed a multi-robot motion-planning algorithm called “Global-to-Local Safe Autonomy Synthesis,” or GLAS, which imitates a complete-information planner with only local information, and “Neural-Swarm,” a swarm-tracking controller augmented to learn complex aerodynamic interactions in close-proximity flight.
[ Caltech ]
Fetch Robotics’ Freight robot is now hauling around pulsed xenon UV lamps to autonomously disinfect spaces with UV-A, UV-B, and UV-C, all at the same time.
[ SmartGuard UV ]
When you’re a vertically symmetrical quadruped robot, there is no upside-down.
[ Ghost Robotics ]
In the virtual world, the objects you pick up do not exist: you can see that cup or pen, but it does not feel like you’re touching them. That presented a challenge to EPFL professor Herbert Shea. Drawing on his extensive experience with silicone-based muscles and motors, Shea wanted to find a way to make virtual objects feel real. “With my team, we’ve created very small, thin and fast actuators,” explains Shea. “They are millimeter-sized capsules that use electrostatic energy to inflate and deflate.” The capsules have an outer insulating membrane made of silicone enclosing an inner pocket filled with oil. Each bubble is surrounded by four electrodes, that can close like a zipper. When a voltage is applied, the electrodes are pulled together, causing the center of the capsule to swell like a blister. It is an ingenious system because the capsules, known as HAXELs, can move not only up and down, but also side to side and around in a circle. “When they are placed under your fingers, it feels as though you are touching a range of different objects,” says Shea.
[ EPFL ]
Through the simple trick of reversing motors on impact, a quadrotor can land much more reliably on slopes.
[ Sherbrooke ]
Turtlebot delivers candy at Harvard.
I <3 Turtlebot SO MUCH
[ Harvard ]
Traditional drone controllers are a little bit counterintuitive, because there’s one stick that’s forwards and backwards and another stick that’s up and down but they’re both moving on the same axis. How does that make sense?! Here’s a remote that gives you actual z-axis control instead.
[ Fenics ]
Thanks Ashley!
Lio is a mobile robot platform with a multifunctional arm explicitly designed for human-robot interaction and personal care assistant tasks. The robot has already been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an everyday basis.
[ F&P Robotics ]
Video shows a ground vehicle autonomously exploring and mapping a multi-storage garage building and a connected patio on Carnegie Mellon University campus. The vehicle runs onboard state estimation and mapping leveraging range, vision, and inertial sensing, local planning for collision avoidance, and terrain analysis. All processing is real-time and no post-processing involved. The vehicle drives at 2m/s through the exploration run. This work is dedicated to DARPA Subterranean Challange.
[ CMU ]
Raytheon UK’s flagship STEM programme, the Quadcopter Challenge, gives 14-15 year olds the chance to participate in a hands-on, STEM-based engineering challenge to build a fully operational quadcopter. Each team is provided with an identical kit of parts, tools and instructions to build and customise their quadcopter, whilst Raytheon UK STEM Ambassadors provide mentoring, technical support and deliver bite-size learning modules to support the build.
[ Raytheon ]
A video on some of the research work that is being carried out at The Australian Centre for Field Robotics, University of Sydney.
[ University of Sydney ]
Jeannette Bohg, assistant professor of computer science at Stanford University, gave one of the Early Career Award Keynotes at RSS 2020.
[ RSS 2020 ]
Adam Savage remembers Grant Imahara.
[ Tested ] Continue reading →
#437749 Video Friday: NASA Launches Its Most ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Virtual Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Yesterday was a big day for what was quite possibly the most expensive robot on Earth up until it wasn’t on Earth anymore.
Perseverance and the Ingenuity helicopter are expected to arrive on Mars early next year.
[ JPL ]
ICYMI, our most popular post this week featured Northeastern University roboticist John Peter Whitney literally putting his neck on the line for science! He was testing a remotely operated straight razor shaving robotic system powered by fluidic actuators. The cutting-edge (sorry!) device transmits forces from a primary stage, operated by a barber, to a secondary stage, with the razor attached.
[ John Peter Whitney ]
Together with Boston Dynamics, Ford is introducing a pilot program into our Van Dyke Transmission Plant. Say hello to Fluffy the Robot Dog, who creates fast and accurate 3D scans that helps Ford engineers when we’re retooling our plants.
Not shown in the video: “At times, Fluffy sits on its robotic haunches and rides on the back of a small, round Autonomous Mobile Robot, known informally as Scouter. Scouter glides smoothly up and down the aisles of the plant, allowing Fluffy to conserve battery power until it’s time to get to work. Scouter can autonomously navigate facilities while scanning and capturing 3-D point clouds to generate a CAD of the facility. If an area is too tight for Scouter, Fluffy comes to the rescue.”
[ Ford ]
There is a thing that happens at 0:28 in this video that I have questions about.
[ Ghost Robotics ]
Pepper is far more polite about touching than most humans.
[ Paper ]
We don’t usually post pure simulation videos unless they give us something to get really, really excited about. So here’s a pure simulation video.
[ Hybrid Robotics ]
University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.
[ DRSL ]
HMI is making beastly electric arms work underwater, even if they’re not stapled to a robotic submarine.
[ HMI ]
Here’s some interesting work in progress from MIT’s Biomimetics Robotics Lab. The limb is acting as a “virtual magnet” using a bimodal force and direction sensor.
Thanks Peter!
[ MIT Biomimetics Lab ]
This is adorable but as a former rabbit custodian I can assure you that approximately 3 seconds after this video ended, all of the wires on that robot were chewed to bits.
[ Lingkang Zhang ]
During the ARCHE 2020 integration week, TNO and the ETH Robot System Lab (RSL) collaborated to integrate their research and development process using the Articulated Locomotion and MAnipulation (ALMA) robot. Next to the integration of software, we tested software to confirm proper implementation and development. We also captured visual and auditory data for future software development. This all resulted in the creation of multiple demo’s to show the capabilities of the teleoperation framework using the ALMA robot.
[ RSL ]
When we talk about practical applications quadrupedal robots with foot wheels, we don’t usually think about them on this scale, although we should.
[ RSL ]
Juan wrote in to share a DIY quadruped that he’s been working on, named CHAMP.
Juan says that the demo robot can be built in less than US $1000 with easily accessible parts. “I hope that my project can provide a more accessible platform for students, researchers, and enthusiasts who are interested to learn more about quadrupedal robot development and its underlying technology.”
[ CHAMP ]
Thanks Juan!
Here’s a New Zealand TV report about a study on robot abuse from Christoph Bartneck at the University of Canterbury.
[ Paper ]
Our Robotics Studio is a hands on class exposing students to practical aspects of the design, fabrication, and programming of physical robotic systems. So what happens when the class goes virtual due to the covid-19 virus? Things get physical — all @ home.
[ Columbia ]
A few videos from the Supernumerary Robotic Devices Workshop, held online earlier this month.
“Handheld Robots: Bridging the Gap between Fully External and Wearable Robots,” presented by Walterio Mayol-Cuevas, University of Bristol.
“Playing the Piano with 11 Fingers: The Neurobehavioural Constraints of Human Robot Augmentation,” presented by Aldo Faisal, Imperial College London.
[ Workshop ] Continue reading →
#437745 Video Friday: Japan’s Giant Gundam ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.
In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.
[ Gundam Factory Yokohama ]
Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.
So that’s where Cassie’s eyes go.
[ Berkeley ]
Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.
[ SubT ]
Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.
[ Softbank ]
University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.
[ University of Michigan ]
Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.
[ Suzimori Endo Lab ]
The most explode-y of drones manages not to explode this time.
[ SpaceX ]
At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.
While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.
[ Amazon ]
Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.
This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.
[ FLIR ]
Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.
[ Paper ] via [ HKUST ]
Emys can help keep kindergarteners sitting still for a long time, which is not small feat!
[ Emys ]
Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.
[ DJI ]
This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.
[ ABB ]
This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.
[ NASA ]
Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.
[ MassTech ]
San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.
You can apply for this experience through Formant at the link below.
[ Formant ] via [ TRR ]
Thanks Steve!
An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.
For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.
[ IAS ] Continue reading →