Tag Archives: video
#437386 Scary A.I. more intelligent than you
GPT-3 (Generative Pre-trained Transformer 3), is an artificial intelligence language generator that uses deep learning to produce human-like output. The high quality of its text is very difficult to distinguish from a human’s. Many scientists, researchers and engineers (including Stephen … Continue reading
#439161 Video Friday: Ingenuity on Mars
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
ICRA 2021 – May 30-5, 2021 – [Online Event]
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
ROSCon 20201 – October 21-23, 2021 – New Orleans, LA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.
Within the last four days, the Ingenuity has flown twice (!) on Mars.
This is an enhanced video showing some of the dust that the helicopter kicked up as it took off:
Data is still incoming for the second flight, but we know that it went well, at least:
[ NASA ]
Can someone who knows a lot about HRI please explain to me why I'm absolutely fascinated by Flatcat?
You can now back Flatcat on Kickstarter for a vaguely distressing $1,200.
[ Flatcat ]
Digit navigates a novel indoor environment without pre-mapping or markers, with dynamic obstacle avoidance. Waypoints are defined relative to the global reference frame determined at power-on. No bins were harmed in filming.
[ Agility Robotics ]
The Yellow Drum Machine, popped up on YouTube again this week for some reason. And it's still one of my favorite robots of all time.
[ Robotshop ]
This video shows results of high-speed autonomous flight in a forest through trees. Path planning uses a trajectory library with pre-established correspondences for collision checking. Decisions are made in 0.2-0.3ms enabling the flight at the speed of 10m/s. No prior map is used.
[ Near Earth ]
We present ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm. Our framework is built upon a physics engine and enables realistic interactions with objects while navigating through scenes and performing tasks.
[ Allen Institute ]
Well this is certainly one of the more unusual multirotor configurations I've ever seen.
[ KAIST ]
Thailand’s Mahidol University and the Institute of Molecular Biosciences chose ABB's YuMi cobot & IRB 1100 robot to work together to fast-track Covid-19 vaccine development. The robots quickly perform repetitive tasks such as unscrewing vials and transporting them to test stations, protecting human workers from injury or harm.
[ ABB ]
Skydio's 3D scan functionality is getting more and more impressive.
[ Skydio ]
With more than 50 service locations across Europe, Stadler Service is focused on increasing train availability, reliability, and safety. ANYbotics is partnering with Stadler Service to explore the potential of mobile robots to increase the efficiency and quality of routine inspection and maintenance of rolling stock.
[ ANYbotics ]
Inspection engineers at Kiwa Inspecta used the Elios 2 to inspect a huge decommissioned oil cavern. The inspection would have required six months and a million Euros if conducted manually but with the Elios 2 it was completed in just a few days at a significantly lower cost.
[ Flyability ]
RightHand Robotics builds a data-driven intelligent piece-picking platform, providing flexible and scalable automation for predictable order fulfillment. RightPick™ 3 is the newest generation of our award-winning autonomous, industrial robot system.
[ RightHand Robotics ]
NASA's Unmanned Aircraft Systems Traffic Management project, or UTM, is working to safely integrate drones into low-altitude airspace. In 2019, the project completed its final phase of flight tests. The research results are being transferred to the Federal Aviation Administration, who will continue development of the UTM system and implement it over time.
[ NASA ]
At the Multi-Robot Planning and Control lab, our research vision is to build multi-robot systems that are capable of acting competently in the real world. We study, develop and combine automated planning, coordination, and control methods to achieve this capability. We find that some of the most interesting basic research questions derive from the problem features and constraints imposed by real-world applications. This video illustrates some of these research questions.
[ Örebro ]
Thanks Fan!
The University of Texas at Austin’s Cockrell School of Engineering and College of Natural Sciences are partnering on life-changing research in artificial intelligence and robotics—ensuring that UT continues to lead the way in launching tomorrow’s technologies.
[ UT Robotics ]
Thanks Fan!
Over the past ten years various robotics and remote technologies have been introduced at Fukushima sites for such tasks as inspection, rubble removal, and sampling showing success and revealing challenges. Successful decommissioning will rely on the development of highly reliable robotic technologies that can be deployed rapidly and efficiently into the sites. The discussion will focus on the decommissioning challenges and robotic technologies that have been used in Fukushima. The panel will conclude with the lessons learned from Fukushima’s past 10-year experience and how robotics must prepare to be ready to respond in the event of future disasters.
[ IFRR ] Continue reading
#438754 TALOS Humanoid Robot in Scotland
Video of TALOS arriving at the University of Edinburgh, being unpacked, and activated.
#439136 Video Friday: Aquatic Snakebotics
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
ICRA 2021 – May 30-5, 2021 – [Online Event]
RoboCup 2021 – June 22-28, 2021 – [Online Event]
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
ROSCon 20201 – October 21-23, 2021 – New Orleans, LA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
Researchers from the Biorobotics Lab in the School of Computer Science’s Robotics Institute at Carnegie Mellon University tested the hardened underwater modular robot snake (HUMRS) last month in the pool, diving the robot through underwater hoops, showing off its precise and smooth swimming, and demonstrating its ease of control.
The robot's modular design allows it to adapt to different tasks, whether squeezing through tight spaces under rubble, climbing up a tree or slithering around a corner underwater. For the underwater robot snake, the team used existing watertight modules that allow the robot to operate in bad conditions. They then added new modules containing the turbines and thrusters needed to maneuver the robot underwater.
[ CMU ]
Robots are learning how not to fall over after stepping on your foot and kicking you in the shin.
[ B-Human ]
Like boot prints on the Moon, NASA's OSIRIS-REx spacecraft left its mark on asteroid Bennu. Now, new images—taken during the spacecraft's final fly-over on April 7, 2021—reveal the aftermath of the historic Touch-and-Go (TAG) sample acquisition event from Oct. 20, 2020.
[ NASA ]
In recognition of National Robotics Week, Conan O'Brien thanks one of the robots that works for him.
[ YouTube ]
The latest from Wandercraft's self-balancing Atalante exo.
[ Wandercraft ]
Stocking supermarket shelves is one of those things that's much more difficult than it looks for robots, involving in-hand manipulation, motion planning, vision, and tactile sensing. Easy for humans, but robots are getting better.
[ Article ]
Thanks Marco!
Draganfly drone spraying Varigard disinfectant at the Smoothie King stadium. Our drone sanitization spraying technology is up to 100% more efficient and effective than conventional manual spray sterilization processes.
[ Draganfly ]
Baubot is a mobile construction robot that can do pretty much everything, apparently.
I’m pretty skeptical of robots like these; especially ones that bill themselves as platforms that can be monetized by third-party developers. From what we've seen, the most successful robots instead focus on doing one thing very well.
[ Baubot ]
In this demo, a remote operator sends an unmanned ground vehicle on an autonomous inspection mission via Clearpath’s web-based Outdoor Navigation Software.
[ Clearpath ]
Aurora’s Odysseus aircraft is a high-altitude pseudo-satellite that can change how we use the sky. At a fraction of the cost of a satellite and powered by the sun, Odysseus offers vast new possibilities for those who need to stay connected and informed.
[ Aurora ]
This video from 1999 discusses the soccer robot research activities at Carnegie Mellon University. CMUnited, the team of robots developed by Manuela Veloso and her students, won the small-size competition in both 1997 and 1998.
[ CMU ]
Thanks Fan!
This video propose an overview of our participation to the DARPA subterranean challenge, with a focus on the urban edition taking place Feb. 18-27, 2020, at Satsop Business Park west of Olympia, Washington.
[ Norlab ]
In today’s most advanced warehouses, Magazino’s autonomous robot TORU works side by side with human colleagues. The robot is specialized in picking, transporting, and stowing objects like shoe boxes in e-commerce warehouses.
[ Magazino ]
A look at the Control Systems Lab at the National Technical University of Athens.
[ CSL ]
Thanks Fan!
Doug Weber of MechE and the Neuroscience Institute discusses his group’s research on harnessing the nervous system's ability to control not only our bodies, but the machines and prostheses that can enhance our bodies, especially for those with disabilities.
[ CMU ]
Mark Yim, Director of the GRASP Lab at UPenn, gives a talk on “Is Cost Effective Robotics Interesting?” Yes, yes it is.
Robotic technologies have shown the capability to do amazing things. But many of those things are too expensive to be useful in any real sense. Cost reduction has often been shunned by research engineers and scientists in academia as “just engineering.” For robotics to make a larger impact on society the cost problem must be addressed.
[ CMU ]
There are all kinds of “killer robots” debates going on, but if you want an informed, grounded, nuanced take on AI and the future of war-fighting, you want to be watching debates like these instead. Professor Rebecca Crootof speaks with Brigadier General Patrick Huston, Assistant Judge Advocate General for Military Law and Operations, at Duke Law School's 26th Annual National Security Law conference.
[ Lawfire ]
This week’s Lockheed Martin Robotics Seminar is by Julie Adams from Oregon State, on “Human-Collective Teams: Algorithms, Transparency .”
Biological inspiration for artificial systems abounds. The science to support robotic collectives continues to emerge based on their biological inspirations, spatial swarms (e.g., fish and starlings) and colonies (e.g., honeybees and ants). Developing effective human-collective teams requires focusing on all aspects of the integrated system development. Many of these fundamental aspects have been developed independently, but our focus is an integrated development process to these complex research questions. This presentation will focus on three aspects: algorithms, transparency, and resilience for collectives.
[ UMD ] Continue reading
#439105 This Robot Taught Itself to Walk in a ...
Recently, in a Berkeley lab, a robot called Cassie taught itself to walk, a little like a toddler might. Through trial and error, it learned to move in a simulated world. Then its handlers sent it strolling through a minefield of real-world tests to see how it’d fare.
And, as it turns out, it fared pretty damn well. With no further fine-tuning, the robot—which is basically just a pair of legs—was able to walk in all directions, squat down while walking, right itself when pushed off balance, and adjust to different kinds of surfaces.
It’s the first time a machine learning approach known as reinforcement learning has been so successfully applied in two-legged robots.
This likely isn’t the first robot video you’ve seen, nor the most polished.
For years, the internet has been enthralled by videos of robots doing far more than walking and regaining their balance. All that is table stakes these days. Boston Dynamics, the heavyweight champ of robot videos, regularly releases mind-blowing footage of robots doing parkour, back flips, and complex dance routines. At times, it can seem the world of iRobot is just around the corner.
This sense of awe is well-earned. Boston Dynamics is one of the world’s top makers of advanced robots.
But they still have to meticulously hand program and choreograph the movements of the robots in their videos. This is a powerful approach, and the Boston Dynamics team has done incredible things with it.
In real-world situations, however, robots need to be robust and resilient. They need to regularly deal with the unexpected, and no amount of choreography will do. Which is how, it’s hoped, machine learning can help.
Reinforcement learning has been most famously exploited by Alphabet’s DeepMind to train algorithms that thrash humans at some the most difficult games. Simplistically, it’s modeled on the way we learn. Touch the stove, get burned, don’t touch the damn thing again; say please, get a jelly bean, politely ask for another.
In Cassie’s case, the Berkeley team used reinforcement learning to train an algorithm to walk in a simulation. It’s not the first AI to learn to walk in this manner. But going from simulation to the real world doesn’t always translate.
Subtle differences between the two can (literally) trip up a fledgling robot as it tries out its sim skills for the first time.
To overcome this challenge, the researchers used two simulations instead of one. The first simulation, an open source training environment called MuJoCo, was where the algorithm drew upon a large library of possible movements and, through trial and error, learned to apply them. The second simulation, called Matlab SimMechanics, served as a low-stakes testing ground that more precisely matched real-world conditions.
Once the algorithm was good enough, it graduated to Cassie.
And amazingly, it didn’t need further polishing. Said another way, when it was born into the physical world—it knew how to walk just fine. In addition, it was also quite robust. The researchers write that two motors in Cassie’s knee malfunctioned during the experiment, but the robot was able to adjust and keep on trucking.
Other labs have been hard at work applying machine learning to robotics.
Last year Google used reinforcement learning to train a (simpler) four-legged robot. And OpenAI has used it with robotic arms. Boston Dynamics, too, will likely explore ways to augment their robots with machine learning. New approaches—like this one aimed at training multi-skilled robots or this one offering continuous learning beyond training—may also move the dial. It’s early yet, however, and there’s no telling when machine learning will exceed more traditional methods.
And in the meantime, Boston Dynamics bots are testing the commercial waters.
Still, robotics researchers, who were not part of the Berkeley team, think the approach is promising. Edward Johns, head of Imperial College London’s Robot Learning Lab, told MIT Technology Review, “This is one of the most successful examples I have seen.”
The Berkeley team hopes to build on that success by trying out “more dynamic and agile behaviors.” So, might a self-taught parkour-Cassie be headed our way? We’ll see.
Image Credit: University of California Berkeley Hybrid Robotics via YouTube Continue reading