Tag Archives: version

#435707 AI Agents Startle Researchers With ...

After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.

After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.

The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.

In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”

According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”

Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.

Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.

Illustration: OpenAI

AI agents construct a fort during a hide-and-seek game developed by OpenAI.

In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).

The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.

Illustration: OpenAI

An AI agent uses a nearby box to surf its way into a competitor’s fort.

In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”

Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”

AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.

“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”

Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading

Posted in Human Robots

#435681 Video Friday: This NASA Robot Uses ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Let us know if you have suggestions for next week, and enjoy today’s videos.

Robots can land on the Moon and drive on Mars, but what about the places they can’t reach? Designed by engineers as NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff, scanning the rock for ancient fossils from the sea that once filled the area.

The LEMUR project has since concluded, but it helped lead to a new generation of walking, climbing and crawling robots. In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could discover similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds.

[ NASA ]

This video demonstrates the autonomous footstep planning developed by IHMC. Robots in this video are the Atlas humanoid robot (DRC version) and the NASA Valkyrie. The operator specifies a goal location in the world, which is modeled as planar regions using the robot’s perception sensors. The planner then automatically computes the necessary steps to reach the goal using a Weighted A* algorithm. The algorithm does not reject footholds that have a certain amount of support, but instead modifies them after the plan is found to try and increase that support area.

Currently, narrow terrain has a success rate of about 50%, rough terrain is about 90%, whereas flat ground is near 100%. We plan on increasing planner speed and the ability to plan through mazes and to unseen goals by including a body-path planner as the first step. Control, Perception, and Planning algorithms by IHMC Robotics.

[ IHMC ]

I’ve never really been able to get into watching people play poker, but throw an AI from CMU and Facebook into a game of no-limit Texas hold’em with five humans, and I’m there.

[ Facebook ]

In this video, Cassie Blue is navigating autonomously. Right now, her world is very small, the Wavefield at the University of Michigan, where she is told to turn left at intersections. You’re right, that is not a lot of independence, but it’s a first step away from a human and an RC controller!

Using a RealSense RGBD Camera, an IMU, and our version of an InEKF with contact factors, Cassie Blue is building a 3D semantic map in real time that identifies sidewalks, grass, poles, bicycles, and buildings. From the semantic map, occupancy and cost maps are built with the sidewalk identified as walk-able area and everything else considered as an obstacle. A planner then sets a goal to stay approximately 50 cm to the right of the sidewalk’s left edge and plans a path around obstacles and corners using D*. The path is translated into way-points that are achieved via Cassie Blue’s gait controller.

[ University of Michigan ]

Thanks Jesse!

Dave from HEBI Robotics wrote in to share some new actuators that are designed to get all kinds of dirty: “The R-Series takes HEBI’s X-Series to the next level, providing a sealed robotics solution for rugged, industrial applications and laying the groundwork for industrial users to address challenges that are not well met by traditional robotics. To prove it, we shot some video right in the Allegheny River here in Pittsburgh. Not a bad way to spend an afternoon :-)”

The R-Series Actuator is a full-featured robotic component as opposed to a simple servo motor. The output rotates continuously, requires no calibration or homing on boot-up, and contains a thru-bore for easy daisy-chaining of wiring. Modular in nature, R-Series Actuators can be used in everything from wheeled robots to collaborative robotic arms. They are sealed to IP67 and designed with a lightweight form factor for challenging field applications, and they’re packed with sensors that enable simultaneous control of position, velocity, and torque.

[ HEBI Robotics ]

Thanks Dave!

If your robot hands out karate chops on purpose, that’s great. If it hands out karate chops accidentally, maybe you should fix that.

COVR is short for “being safe around collaborative and versatile robots in shared spaces”. Our mission is to significantly reduce the complexity in safety certifying cobots. Increasing safety for collaborative robots enables new innovative applications, thus increasing production and job creation for companies utilizing the technology. Whether you’re an established company seeking to deploy cobots or an innovative startup with a prototype of a cobot related product, COVR will help you analyze, test and validate the safety for that application.

[ COVR ]

Thanks Anna!

EPFL startup Flybotix has developed a novel drone with just two propellers and an advanced stabilization system that allow it to fly for twice as long as conventional models. That fact, together with its small size, makes it perfect for inspecting hard-to-reach parts of industrial facilities such as ducts.

[ Flybotix ]

SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich, currently being tested using Automation and Robotics Laboratories (ARL) facilities at our technical centre in the Netherlands. The robot is being used to investigate the potential of ‘dynamic walking’ and jumping to get around in low gravity environments.

SpaceBok could potentially go up to 2 m high in lunar gravity, although such a height poses new challenges. Once it comes off the ground the legged robot needs to stabilise itself to come down again safely – like a mini-spacecraft. So, like a spacecraft. SpaceBok uses a reaction wheel to control its orientation.

[ ESA ]

A new video from GITAI showing progress on their immersive telepresence robot for space.

[ GITAI ]

Tech United’s HERO robot (a Toyota HSR) competed in the RoboCup@Home competition, and it had a couple of garbage-related hiccups.

[ Tech United ]

Even small drones are getting better at autonomous obstacle avoidance in cluttered environments at useful speeds, as this work from the HKUST Aerial Robotics Group shows.

[ HKUST ]

DelFly Nimbles now come in swarms.

[ DelFly Nimble ]

This is a very short video, but it’s a fairly impressive look at a Baxter robot collaboratively helping someone put a shirt on, a useful task for folks with disabilities.

[ Shibata Lab ]

ANYmal can inspect the concrete in sewers for deterioration by sliding its feet along the ground.

[ ETH Zurich ]

HUG is a haptic user interface for teleoperating advanced robotic systems as the humanoid robot Justin or the assistive robotic system EDAN. With its lightweight robot arms, HUG can measure human movements and simultaneously display forces from the distant environment. In addition to such teleoperation applications, HUG serves as a research platform for virtual assembly simulations, rehabilitation, and training.

[ DLR ]

This video about “image understanding” from CMU in 1979 (!) is amazing, and even though it’s long, you won’t regret watching until 3:30. Or maybe you will.

[ ARGOS (pdf) ]

Will Burrard-Lucas’ BeetleCam turned 10 this month, and in this video, he recounts the history of his little robotic camera.

[ BeetleCam ]

In this week’s episode of Robots in Depth, Per speaks with Gabriel Skantze from Furhat Robotics.

Gabriel Skantze is co-founder and Chief Scientist at Furhat Robotics and Professor in speech technology at KTH with a specialization in conversational systems. He has a background in research into how humans use spoken communication to interact.

In this interview, Gabriel talks about how the social robot revolution makes it necessary to communicate with humans in a human ways through speech and facial expressions. This is necessary as we expand the number of people that interact with robots as well as the types of interaction. Gabriel gives us more insight into the many challenges of implementing spoken communication for co-bots, where robots and humans work closely together. They need to communicate about the world, the objects in it and how to handle them. We also get to hear how having an embodied system using the Furhat robot head helps the interaction between humans and the system.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435664 Swarm Robots Mimic Ant Jaws to Flip and ...

Small robots are appealing because they’re simple, cheap, and it’s easy to make a lot of them. Unfortunately, being simple and cheap means that each robot individually can’t do a whole lot. To make up for this, you can do what insects do—leverage that simplicity and low-cost to just make a huge swarm of simple robots, and together, they can cooperate to carry out relatively complex tasks.

Using insects as an example does set a bit of an unfair expectation for the poor robots, since insects are (let’s be honest) generally smarter and much more versatile than a robot on their scale could ever hope to be. Most robots with insect-like capabilities (like DASH and its family) are really too big and complex to be turned into swarms, because to make a vast amount of small robots, things like motors aren’t going to work because they’re too expensive.

The question, then, is to how to make a swarm of inexpensive small robots with insect-like mobility that don’t need motors to get around, and Jamie Paik’s Reconfigurable Robotics Lab at EPFL has an answer, inspired by trap-jaw ants.

Let’s talk about trap-jaw ants for just a second, because they’re insane. You can read this 2006 paper about them if you’re particularly interested in insane ants (and who isn’t!), but if you just want to hear the insane bit, it’s that trap-jaw ants can fire themselves into the air by biting the ground (!). In just 0.06 millisecond, their half-millimeter long mandibles can close at a top speed of 64 meters per second, which works out to an acceleration of about 100,000 g’s. Biting the ground causes the ant’s head to snap back with a force of 300 times the body weight of the ant itself, which launches the ant upwards. The ants can fly 8 centimeters vertically, and up to 15 cm horizontally—this is a lot, for an ant that’s just a few millimeters long.

Trap-jaw ants can fire themselves into the air by biting the ground, causing the ant’s head to snap back with a force of 300 times the body weight of the ant itself

EPFL’s robots, called Tribots, look nothing at all like trap-jaw ants, which personally I am fine with. They’re about 5 cm tall, weighing 10 grams each, and can be built on a flat sheet, and then folded into a tripod shape, origami-style. Or maybe it’s kirigami, because there’s some cutting involved. The Tribots are fully autonomous, meaning they have onboard power and control, including proximity sensors that allow them to detect objects and avoid them.

Photo: Marc Delachaux/EPFL

EPFL researchers Zhenishbek Zhakypov and Jamie Paik.

Avoiding objects is where the trap-jaw ants come in. Using two different shape-memory actuators (a spring and a latch, similar to how the ant’s jaw works), the Tribots can move around using a bunch of different techniques that can adapt to the terrain that they’re on, including:

Vertical jumping for height
Horizontal jumping for distance
Somersault jumping to clear obstacles
Walking on textured terrain with short hops (called “flic-flac” walking)
Crawling on flat surfaces

Here’s the robot in action:

Tribot’s maximum vertical jump is 14 cm (2.5 times its height), and horizontally it can jump about 23 cm (almost 4 times its length). Tribot is actually quite efficient in these movements, with a cost of transport much lower than similarly-sized robots, on par with insects themselves.

Working together, small groups of Tribots can complete tasks that a single robot couldn’t do alone. One example is pushing a heavy object a set distance. It turns out that you need five Tribots for this task—a leader robot, two worker robots, a monitor robot to measure the distance that the object has been pushed, and then a messenger robot to relay communications around the obstacle.

Image: EPFL

Five Tribots collaborate to move an object to a desired position, using coordination between a leader, two workers, a monitor, and a messenger robot. The leader orders the two worker robots to push the object while the monitor measures the relative position of the object. As the object blocks the two-way link between the leader and the monitor, the messenger maintains the communication link.

The researchers acknowledge that the current version of the hardware is limited in pretty much every way (mobility, sensing, and computation), but it does a reasonable job of demonstrating what’s possible with the concept. The plan going forward is to automate fabrication in order to “enable on-demand, ’push-button-manufactured’” robots.

“Designing minimal and scalable insect-inspired multi-locomotion millirobots,” by Zhenishbek Zhakypov, Kazuaki Mori, Koh Hosoda, and Jamie Paik from EPFL and Osaka University, is published in the current issue of Nature.
[ RRL ] via [ EPFL ] Continue reading

Posted in Human Robots

#435648 Surprisingly Speedy Soft Robot Survives ...

Soft robots are getting more and more popular for some very good reasons. Their relative simplicity is one. Their relative low cost is another. And for their simplicity and low cost, they’re generally able to perform very impressively, leveraging the unique features inherent to their design and construction to move themselves and interact with their environment. The other significant reason why soft robots are so appealing is that they’re durable. Without the constraints of rigid parts, they can withstand the sort of abuse that would make any roboticist cringe.

In the current issue of Science Robotics, a group of researchers from Tsinghua University in China and University of California, Berkeley, present a new kind of soft robot that’s both higher performance and much more robust than just about anything we’ve seen before. The deceptively simple robot looks like a bent strip of paper, but it’s able to move at 20 body lengths per second and survive being stomped on by a human wearing tennis shoes. Take that, cockroaches.

This prototype robot measures just 3 centimeters by 1.5 cm. It takes a scanning electron microscope to actually see what the robot is made of—a thermoplastic layer is sandwiched by palladium-gold electrodes, bonded with adhesive silicone to a structural plastic at the bottom. When an AC voltage (as low as 8 volts but typically about 60 volts) is run through the electrodes, the thermoplastic extends and contracts, causing the robot’s back to flex and the little “foot” to shuffle. A complete step cycle takes just 50 milliseconds, yielding a 200 hertz gait. And technically, the robot “runs,” since it does have a brief aerial phase.

Image: Science Robotics

Photos from a high-speed camera show the robot’s gait (A to D) as it contracts and expands its body.

To put the robot’s top speed of 20 body lengths per second in perspective, have a look at this nifty chart, which shows where other animals relative running speeds of some animals and robots versus body mass:

Image: Science Robotics

This chart shows the relative running speeds of some mammals (purple area), arthropods (orange area), and soft robots (blue area) versus body mass. For both mammals and arthropods, relative speeds show a strong negative scaling law with respect to the body mass: speeds increase as body masses decrease. However, for soft robots, the relationship appears to be the opposite: speeds decrease as the body mass decrease. For the little soft robots created by the researchers from Tsinghua University and UC Berkeley (red stars), the scaling law is similar to that of living animals: Higher speed was attained as the body mass decreased.

If you were wondering, like we were, just what that number 39 is on that chart (top left corner), it’s a species of tiny mite that was discovered underneath a rock in California in 1916. The mite is just under 1 mm in size, but it can run at 0.8 kilometer per hour, which is 322 body lengths per second, making it by far (like, by a factor of two at least) the fastest land animal on Earth relative to size. If a human was to run that fast relative to our size, we’d be traveling at a little bit over 2,000 kilometers per hour. It’s not a coincidence that pretty much everything in the upper left of the chart is an insect—speed scales favorably with decreasing mass, since actuators have a proportionally larger effect.

Other notable robots on the chart with impressive speed to mass ratios are number 27, which is this magnetically driven quadruped robot from UMD, and number 86, UC Berkeley’s X2-VelociRoACH.

Anyway, back to this robot. Some other cool things about it:

You can step on it, squishing it flat with a load about 1 million times its own body weight, and it’ll keep on crawling, albeit only half as fast.
Even climbing a slope of 15 degrees, it can still manage to move at 1 body length per second.
It carries peanuts! With a payload of six times its own weight, it moves a sixth as fast, but still, it’s not like you need your peanuts delivered all that quickly anyway, do you?

Image: Science Robotics

The researchers also put together a prototype with two legs instead of one, which was able to demonstrate a potentially faster galloping gait by spending more time in the air. They suggest that robots like these could be used for “environmental exploration, structural inspection, information reconnaissance, and disaster relief,” which are the sorts of things that you suggest that your robot could be used for when you really have no idea what it could be used for. But this work is certainly impressive, with speed and robustness that are largely unmatched by other soft robots. An untethered version seems possible due to the relatively low voltages required to drive the robot, and if they can put some peanut-sized sensors on there as well, practical applications might actually be forthcoming sometime soon.

“Insect-scale Fast Moving and Ultrarobust Soft Robot,” by Yichuan Wu, Justin K. Yim, Jiaming Liang, Zhichun Shao, Mingjing Qi, Junwen Zhong, Zihao Luo, Xiaojun Yan, Min Zhang, Xiaohao Wang, Ronald S. Fearing, Robert J. Full, and Liwei Lin from Tsinghua University and UC Berkeley, is published in Science Robotics. Continue reading

Posted in Human Robots

#435634 Robot Made of Clay Can Sculpt Its Own ...

We’re very familiar with a wide variety of transforming robots—whether for submarines or drones, transformation is a way of making a single robot adaptable to different environments or tasks. Usually, these robots are restricted to a discrete number of configurations—perhaps two or three different forms—because of the constraints imposed by the rigid structures that robots are typically made of.

Soft robotics has the potential to change all this, with robots that don’t have fixed forms but instead can transform themselves into whatever shape will enable them to do what they need to do. At ICRA in Montreal earlier this year, researchers from Yale University demonstrated a creative approach toward a transforming robot powered by string and air, with a body made primarily out of clay.

Photo: Evan Ackerman

The robot is actuated by two different kinds of “skin,” one layered on top of another. There’s a locomotion skin, made of a pattern of pneumatic bladders that can roll the robot forward or backward when the bladders are inflated sequentially. On top of that is the morphing skin, which is cable-driven, and can sculpt the underlying material into a variety of shapes, including spheres, cylinders, and dumbbells. The robot itself consists of both of those skins wrapped around a chunk of clay, with the actuators driven by offboard power and control. Here it is in action:

The Yale researchers have been experimenting with morphing robots that use foams and tensegrity structures for their bodies, but that stuff provides a “restoring force,” springing back into its original shape once the actuation stops. Clay is different because it holds whatever shape it’s formed into, making the robot more energy efficient. And if the dumbbell shape stops being useful, the morphing layer can just squeeze it back into a cylinder or a sphere.

While this robot, and the sample transformation shown in the video, are relatively simplistic, the researchers suggest some ways in which a more complex version could be used in the future:

Photo: IEEE Xplore

This robot’s morphing skin sculpts its clay body into different shapes.

Applications where morphing and locomotion might serve as complementary functions are abundant. For the example skins presented in this work, a search-and-rescue operation could use the clay as a medium to hold a payload such as sensors or transmitters. More broadly, applications include resource-limited conditions where supply chains for materiel are sparse. For example, the morphing sequence shown in Fig. 4 [above] could be used to transform from a rolling sphere to a pseudo-jointed robotic arm. With such a morphing system, it would be possible to robotically morph matter into different forms to perform different functions.

Read this article for free on IEEE Xplore until 5 September 2019

Morphing Robots Using Robotic Skins That Sculpt Clay, by Dylan S. Shah, Michelle C. Yuen, Liana G. Tilton, Ellen J. Yang, and Rebecca Kramer-Bottiglio from Yale University, was presented at ICRA 2019 in Montreal.

[ Yale Faboratory ]

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots