Tag Archives: vehicles

#436426 Video Friday: This Robot Refuses to Fall ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Robotic Arena – January 25, 2020 – Wrocław, Poland
DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

In case you somehow missed the massive Skydio 2 review we posted earlier this week, the first batches of the drone are now shipping. Each drone gets a lot of attention before it goes out the door, and here’s a behind-the-scenes clip of the process.

[ Skydio ]

Sphero RVR is one of the 15 robots on our robot gift guide this year. Here’s a new video Sphero just released showing some of the things you can do with the robot.

[ RVR ]

NimbRo-OP2 has some impressive recovery skills from the obligatory research-motivated robot abuse.

[ NimbRo ]

Teams seeking to qualify for the Virtual Urban Circuit of the Subterranean Challenge can access practice worlds to test their approaches prior to submitting solutions for the competition. This video previews three of the practice environments.

[ DARPA SubT ]

Stretchable skin-like robots that can be rolled up and put in your pocket have been developed by a University of Bristol team using a new way of embedding artificial muscles and electrical adhesion into soft materials.

[ Bristol ]

Happy Holidays from ABB!

Helping New York celebrate the festive season, twelve ABB robots are interacting with visitors to Bloomingdale’s iconic holiday celebration at their 59th Street flagship store. ABB’s robots are the main attraction in three of Bloomingdale’s twelve-holiday window displays at Lexington and Third Avenue, as ABB demonstrates the potential for its robotics and automation technology to revolutionize visual merchandising and make the retail experience more dynamic and whimsical.

[ ABB ]

We introduce pelican eel–inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel’s stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior.

And here’s a real pelican eel:

[ Science Robotics ]

Delft Dynamics’ updated anti-drone system involves a tether, mid-air net gun, and even a parachute.

[ Delft Dynamics ]

Teleoperation is a great way of helping robots with complex tasks, especially if you can do it through motion capture. But what if you’re teleoperating a non-anthropomorphic robot? Columbia’s ROAM Lab is working on it.

[ Paper ] via [ ROAM Lab ]

I don’t know how I missed this video last year because it’s got a steely robot hand squeezing a cute lil’ chick.

[ MotionLib ] via [ RobotStart ]

In this video we present results of a trajectory generation method for autonomous overtaking of unexpected obstacles in a dynamic urban environment. In these settings, blind spots can arise from perception limitations. For example when overtaking unexpected objects on the vehicle’s ego lane on a two-way street. In this case, a human driver would first make sure that the opposite lane is free and that there is enough room to successfully execute the maneuver, and then it would cut into the opposite lane in order to execute the maneuver successfully. We consider the practical problem of autonomous overtaking when the coverage of the perception system is impaired due to occlusion.

[ Paper ]

New weirdness from Toio!

[ Toio ]

Palo Alto City Library won a technology innovation award! Watch to see how Senior Librarian Dan Lou is using Misty to enhance their technology programs to inspire and educate customers.

[ Misty Robotics ]

We consider the problem of reorienting a rigid object with arbitrary known shape on a table using a two-finger pinch gripper. Reorienting problem is challenging because of its non-smoothness and high dimensionality. In this work, we focus on solving reorienting using pivoting, in which we allow the grasped object to rotate between fingers. Pivoting decouples the gripper rotation from the object motion, making it possible to reorient an object under strict robot workspace constraints.

[ CMU ]

How can a mobile robot be a good pedestrian without bumping into you on the sidewalk? It must be hard for a robot to navigate in crowded environments since the flow of traffic follows implied social rules. But researchers from MIT developed an algorithm that teaches mobile robots to maneuver in crowds of people, respecting their natural behaviour.

[ Roboy Research Reviews ]

What happens when humans and robots make art together? In this awe-inspiring talk, artist Sougwen Chung shows how she “taught” her artistic style to a machine — and shares the results of their collaboration after making an unexpected discovery: robots make mistakes, too. “Part of the beauty of human and machine systems is their inherent, shared fallibility,” she says.

[ TED ]

Last month at the Cooper Union in New York City, IEEE TechEthics hosted a public panel session on the facts and misperceptions of autonomous vehicles, part of the IEEE TechEthics Conversations Series. The speakers were: Jason Borenstein from Georgia Tech; Missy Cummings from Duke University; Jack Pokrzywa from SAE; and Heather M. Roff from Johns Hopkins Applied Physics Laboratory. The panel was moderated by Mark A. Vasquez, program manager for IEEE TechEthics.

[ IEEE TechEthics ]

Two videos this week from Lex Fridman’s AI podcast: Noam Chomsky, and Whitney Cummings.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Jeff Clune at the University of Wyoming, on “Improving Robot and Deep Reinforcement Learning via Quality Diversity and Open-Ended Algorithms.”

Quality Diversity (QD) algorithms are those that seek to produce a diverse set of high-performing solutions to problems. I will describe them and a number of their positive attributes. I will then summarize our Nature paper on how they, when combined with Bayesian Optimization, produce a learning algorithm that enables robots, after being damaged, to adapt in 1-2 minutes in order to continue performing their mission, yielding state-of-the-art robot damage recovery. I will next describe our QD-based Go-Explore algorithm, which dramatically improves the ability of deep reinforcement learning algorithms to solve previously unsolvable problems wherein reward signals are sparse, meaning that intelligent exploration is required. Go-Explore solves Montezuma’s Revenge, considered by many to be a major AI research challenge. Finally, I will motivate research into open-ended algorithms, which seek to innovate endlessly, and introduce our POET algorithm, which generates its own training challenges while learning to solve them, automatically creating a curricula for robots to learn an expanding set of diverse skills. POET creates and solves challenges that are unsolvable with traditional deep reinforcement learning techniques.

[ CMU RI ] Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436178 Within 10 Years, We’ll Travel by ...

What’s faster than autonomous vehicles and flying cars?

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX’s Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes.

But wait, it gets even better…

As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of “robotic avatars” will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.

Let’s dive in.

Hyperloop One: LA to SF in 35 Minutes
Did you know that Hyperloop was the brainchild of Elon Musk? Just one in a series of transportation innovations from a man determined to leave his mark on the industry.

In 2013, in an attempt to shorten the long commute between Los Angeles and San Francisco, the California state legislature proposed a $68 billion budget allocation for what appeared to be the slowest and most expensive bullet train in history.

Musk was outraged. The cost was too high, the train too sluggish. Teaming up with a group of engineers from Tesla and SpaceX, he published a 58-page concept paper for “The Hyperloop,” a high-speed transportation network that used magnetic levitation to propel passenger pods down vacuum tubes at speeds of up to 670 mph. If successful, it would zip you across California in 35 minutes—just enough time to watch your favorite sitcom.

In January 2013, venture capitalist Shervin Pishevar, with Musk’s blessing, started Hyperloop One with myself, Jim Messina (former White House Deputy Chief of Staff for President Obama), and tech entrepreneurs Joe Lonsdale and David Sacks as founding board members. A couple of years after that, the Virgin Group invested in this idea, Richard Branson was elected chairman, and Virgin Hyperloop One was born.

“The Hyperloop exists,” says Josh Giegel, co-founder and chief technology officer of Hyperloop One, “because of the rapid acceleration of power electronics, computational modeling, material sciences, and 3D printing.”

Thanks to these convergences, there are now ten major Hyperloop One projects—in various stages of development—spread across the globe. Chicago to DC in 35 minutes. Pune to Mumbai in 25 minutes. According to Giegel, “Hyperloop is targeting certification in 2023. By 2025, the company plans to have multiple projects under construction and running initial passenger testing.”

So think about this timetable: Autonomous car rollouts by 2020. Hyperloop certification and aerial ridesharing by 2023. By 2025—going on vacation might have a totally different meaning. Going to work most definitely will.

But what’s faster than Hyperloop?

Rocket Travel
As if autonomous vehicles, flying cars, and Hyperloop weren’t enough, in September of 2017, speaking at the International Astronautical Congress in Adelaide, Australia, Musk promised that for the price of an economy airline ticket, his rockets will fly you “anywhere on Earth in under an hour.”

Musk wants to use SpaceX’s megarocket, Starship, which was designed to take humans to Mars, for terrestrial passenger delivery. The Starship travels at 17,500 mph. It’s an order of magnitude faster than the supersonic jet Concorde.

Think about what this actually means: New York to Shanghai in 39 minutes. London to Dubai in 29 minutes. Hong Kong to Singapore in 22 minutes.

So how real is the Starship?

“We could probably demonstrate this [technology] in three years,” Musk explained, “but it’s going to take a while to get the safety right. It’s a high bar. Aviation is incredibly safe. You’re safer on an airplane than you are at home.”

That demonstration is proceeding as planned. In September 2017, Musk announced his intentions to retire his current rocket fleet, both the Falcon 9 and Falcon Heavy, and replace them with the Starships in the 2020s.

Less than a year later, LA mayor Eric Garcetti tweeted that SpaceX was planning to break ground on an 18-acre rocket production facility near the port of Los Angeles. And April of this year marked an even bigger milestone: the very first test flights of the rocket.

Thus, sometime in the next decade or so, “off to Europe for lunch” may become a standard part of our lexicon.

Avatars
Wait, wait, there’s one more thing.

While the technologies we’ve discussed will decimate the traditional transportation industry, there’s something on the horizon that will disrupt travel itself. What if, to get from A to B, you didn’t have to move your body? What if you could quote Captain Kirk and just say “Beam me up, Scotty”?

Well, shy of the Star Trek transporter, there’s the world of avatars.

An avatar is a second self, typically in one of two forms. The digital version has been around for a couple of decades. It emerged from the video game industry and was popularized by virtual world sites like Second Life and books-turned-blockbusters like Ready Player One.

A VR headset teleports your eyes and ears to another location, while a set of haptic sensors shifts your sense of touch. Suddenly, you’re inside an avatar inside a virtual world. As you move in the real world, your avatar moves in the virtual.

Use this technology to give a lecture and you can do it from the comfort of your living room, skipping the trip to the airport, the cross-country flight, and the ride to the conference center.

Robots are the second form of avatars. Imagine a humanoid robot that you can occupy at will. Maybe, in a city far from home, you’ve rented the bot by the minute—via a different kind of ridesharing company—or maybe you have spare robot avatars located around the country.

Either way, put on VR goggles and a haptic suit, and you can teleport your senses into that robot. This allows you to walk around, shake hands, and take action—all without leaving your home.

And like the rest of the tech we’ve been talking about, even this future isn’t far away.

In 2018, entrepreneur Dr. Harry Kloor recommended to All Nippon Airways (ANA), Japan’s largest airline, the design of an Avatar XPRIZE. ANA then funded this vision to the tune of $10 million to speed the development of robotic avatars. Why? Because ANA knows this is one of the technologies likely to disrupt their own airline industry, and they want to be ready.

ANA recently announced its “newme” robot that humans can use to virtually explore new places. The colorful robots have Roomba-like wheeled bases and cameras mounted around eye-level, which capture surroundings viewable through VR headsets.

If the robot was stationed in your parents’ home, you could cruise around the rooms and chat with your family at any time of day. After revealing the technology at Tokyo’s Combined Exhibition of Advanced Technologies in October, ANA plans to deploy 1,000 newme robots by 2020.

With virtual avatars like newme, geography, distance, and cost will no longer limit our travel choices. From attractions like the Eiffel Tower or the pyramids of Egypt to unreachable destinations like the moon or deep sea, we will be able to transcend our own physical limits, explore the world and outer space, and access nearly any experience imaginable.

Final Thoughts
Individual car ownership has enjoyed over a century of ascendancy and dominance.

The first real threat it faced—today’s ride-sharing model—only showed up in the last decade. But that ridesharing model won’t even get ten years to dominate. Already, it’s on the brink of autonomous car displacement, which is on the brink of flying car disruption, which is on the brink of Hyperloop and rockets-to-anywhere decimation. Plus, avatars.

The most important part: All of this change will happen over the next ten years. Welcome to a future of human presence where the only constant is rapid change.

Note: This article—an excerpt from my next book The Future Is Faster Than You Think, co-authored with Steven Kotler, to be released January 28th, 2020—originally appeared on my tech blog at diamandis.com. Read the original article here.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Virgin Hyperloop One Continue reading

Posted in Human Robots

#436174 How Selfish Are You? It Matters for ...

Our personalities impact almost everything we do, from the career path we choose to the way we interact with others to how we spend our free time.

But what about the way we drive—could personality be used to predict whether a driver will cut someone off, speed, or, say, zoom through a yellow light instead of braking?

There must be something to the idea that those of us who are more mild-mannered are likely to drive a little differently than the more assertive among us. At least, that’s what a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is betting on.

“Working with and around humans means figuring out their intentions to better understand their behavior,” said graduate student Wilko Schwarting, lead author on the paper published this week in Proceedings of the National Academy of Sciences. “People’s tendencies to be collaborative or competitive often spills over into how they behave as drivers. In this paper we sought to understand if this was something we could actually quantify.”

The team is building a model that classifies drivers according to how selfish or selfless they are, then uses that classification to help predict how drivers will behave on the road. Ideally, the system will help improve safety for self-driving cars by integrating a degree of ‘humanity’ into how their software perceives its surroundings; right now, human drivers and their cars are just another object, not much different than a tree or a sign.

But unlike trees and signs, humans have behavioral patterns and motivations. For greater success on roads that are still dominated by us mercurial humans, the CSAIL team believes, driverless cars should take our personalities into account.

How Selfish Are You?
About how important is your own well-being to you vs. the well-being of other people? It’s a hard question to answer without specifying who the other people are; your answer would likely differ if we’re talking about your friends, loved ones, strangers, or people you actively dislike.

In social psychology, social value orientation (SVO) refers to people’s preferences for allocating resources between themselves and others. The two broad categories people can fall into are pro-social (people who are more cooperative, and expect cooperation from others) and pro-self (pretty self-explanatory: “Me first!”).

Based on drivers’ behavior in two different road scenarios—merging and making a left turn—the CSAIL team’s model classified drivers as pro-social or egoistic. Slowing down to let someone merge into your lane in front of you would earn you a pro-social classification, while cutting someone off or not slowing down to allow a left turn would make you egoistic.

On the Road
The system then uses these classifications to model and predict drivers’ behavior. The team demonstrated that using their model, errors in predicting the behavior of other cars were reduced by 25 percent.

In a left-turn simulation, for example, their car would wait when an approaching car had an egoistic driver, but go ahead and make the turn when the other driver was prosocial. Similarly, if a self-driving car is trying to merge into the left lane and it’s identified the drivers in that lane as egoistic, it will assume they won’t slow down to let it in, and will wait to merge behind them. If, on the other hand, the self-driving car knows that the human drivers in the left lane are prosocial, it will attempt to merge between them since they’re likely to let it in.

So how does this all translate to better safety?

It’s essentially a starting point for imbuing driverless cars with some of the abilities and instincts that are innate to humans. If you’re driving down the highway and you see a car swerving outside its lane, you’ll probably distance yourself from that car because you know it’s more likely to cause an accident. Our senses take in information we can immediately interpret and act on, and this includes predictions about what might happen based on observations of what just happened. Our observations can clue us in to a driver’s personality (the swerver must be careless) or simply to the circumstances of a given moment (the swerver was texting).

But right now, self-driving cars assume all human drivers behave the same way, and they have no mechanism for incorporating observations about behavioral differences between drivers into their decisions.

“Creating more human-like behavior in autonomous vehicles (AVs) is fundamental for the safety of passengers and surrounding vehicles, since behaving in a predictable manner enables humans to understand and appropriately respond to the AV’s actions,” said Schwarting.

Though it may feel a bit unsettling to think of an algorithm lumping you into a category and driving accordingly around you, maybe it’s less unsettling than thinking of self-driving cars as pre-programmed, oblivious robots unable to adapt to different driving styles.

The team’s next step is to apply their model to pedestrians, bikes, and other agents frequently found in driving environments. They also plan to look into other robotic systems acting among people, like household robots, and integrating social value orientation into their algorithms.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots

#436167 Is it Time for Tech to Stop Moving Fast ...

On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.

What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).

So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.

Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:

“These companies are kings, and they rule over kingdoms far larger than any nation in history.”

Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:

“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”

Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:

“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”

Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:

“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”

Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:

“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”

The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.

Google’s Schmidt told the HAI audience:

“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.

And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:

“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”

Schaake argued:

“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”

Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:

“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”

Hendricks doesn’t buy it:

“This stops now. I’m the boss, and this is over.”

(Well, he is fictional.)

How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.

Says the European Parliament’s Schaake:

“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”

But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:

“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”

Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:

“We need more than guarantees than stated good intentions.”

U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:

“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”

In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:

“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”

(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)

If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.

Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading

Posted in Human Robots