Tag Archives: vehicle

#437857 Video Friday: Robotic Third Hand Helps ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

We are seeing some exciting advances in the development of supernumerary robotic limbs. But one thing about this technology remains a major challenge: How do you control the extra limb if your own hands are busy—say, if you’re carrying a package? MIT researchers at Professor Harry Asada’s lab have an idea. They are using subtle finger movements in sensorized gloves to control the supernumerary limb. The results are promising, and they’ve demonstrated a waist-mounted arm with a qb SoftHand that can help you with doors, elevators, and even handshakes.

[ Paper ]

ROBOPANDA

Fluid actuated soft robots, or fluidic elastomer actuators, have shown great potential in robotic applications where large compliance and safe interaction are dominant concerns. They have been widely studied in wearable robotics, prosthetics, and rehabilitations in recent years. However, such soft robots and actuators are tethered to a bulky pump and controlled by various valves, limiting their applications to a small confined space. In this study, we report a new and effective approach to fluidic power actuation that is untethered, easy to design, fabricate, control, and allows various modes of actuation. In the proposed approach, a sealed elastic tube filled with fluid (gas or liquid) is segmented by adaptors. When twisting a segment, two major effects could be observed: (1) the twisted segment exhibits a contraction force and (2) other segments inflate or deform according to their constraint patterns.

[ Paper ]

And now: “Magnetic cilia carpets.”

[ ETH Zurich ]

To adhere to government recommendations while maintaining requirements for social distancing during the COVID-19 pandemic, Yaskawa Motoman is now utilizing an HC10DT collaborative robot to take individual employee temperatures. Named “Covie”, the design and fabrication of the robotic solution and its software was a combined effort by Yaskawa Motoman’s Technology Advancement Team (TAT) and Product Solutions Group (PSG), as well as a group of robotics students from the University of Dayton.

They should have programmed it to nod if your temperature was normal, and smacked you upside the head while yelling “GO HOME” if it wasn’t.

[ Yaskawa ]

Driving slowly on pre-defined routes, ZMP’s RakuRo autonomous vehicle helps people with mobility challenges enjoy cherry blossoms in Japan.

RakuRo costs about US $1,000 per month to rent, but ZMP suggests that facilities or groups of ~10 people could get together and share one, which makes the cost much more reasonable.

[ ZMP ]

Jessy Grizzle from the Dynamic Legged Locomotion Lab at the University of Michigan writes:

Our lab closed on March 20, 2020 under the State of Michigan’s “Stay Home, Stay Safe” order. For a 24-hour period, it seemed that our labs would be “sanitized” during our absence. Since we had no idea what that meant, we decided that Cassie Blue needed to “Stay Home, Stay Safe” as well. We loaded up a very expensive robot and took her off campus. On May 26, we were allowed to re-open our laboratory. After thoroughly cleaning the lab, disinfecting tools and surfaces, developing and getting approval for new safe operation procedures, we then re-organized our work areas to respect social distancing requirements and brought Cassie back to the laboratory.

During the roughly two months we were working remotely, the lab’s members got a lot done. Papers were written, dissertation proposals were composed, and plans for a new course, ROB 101, Computational Linear Algebra, were developed with colleagues. In addition, one of us (Yukai Gong) found the lockdown to his liking! He needed the long period of quiet to work through some new ideas for how to control 3D bipedal robots.

[ Michigan Robotics ]

Thanks Jesse and Bruce!

You can tell that this video of how Pepper has been useful during COVID-19 is not focused on the United States, since it refers to the pandemic in past tense.

[ Softbank Robotics ]

NASA’s water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023.

[ NASA ]

This could be the most impressive robotic gripper demo I have ever seen.

[ Soft Robotics ]

Whiz, an autonomous vacuum sweeper, innovates the cleaning industry by automating tedious tasks for your team. Easy to train, easy to use, Whiz works with your staff to deliver a high-quality clean while increasing efficiency and productivity.

[ Softbank Robotics ]

About 40 seconds into this video, a robot briefly chases a goose.

[ Ghost Robotics ]

SwarmRail is a new concept for rail-guided omnidirectional mobile robot systems. It aims for a highly flexible production process in the factory of the future by opening up the available work space from above. This means that transport and manipulation tasks can be carried out by floor- and ceiling-bound robot systems. The special feature of the system is the combination of omnidirectionally mobile units with a grid-shaped rail network, which is characterized by passive crossings and a continuous gap between the running surfaces of the rails. Through this gap, a manipulator operating below the rail can be connected to a mobile unit traveling on the rail.

[ DLRRMC ]

RightHand Robotics (RHR), a leader in providing robotic piece-picking solutions, is partnered with PALTAC Corporation, Japan’s largest wholesaler of consumer packaged goods. The collaboration introduces RightHand’s newest piece-picking solution to the Japanese market, with multiple workstations installed in PALTAC’s newest facility, RDC Saitama, which opened in 2019 in Sugito, Saitama Prefecture, Japan.

[ RightHand Robotics ]

From the ICRA 2020, a debate on the “Future of Robotics Research,” addressing such issues as “robotics research is over-reliant on benchmark datasets and simulation” and “robots designed for personal or household use have failed because of fundamental misunderstandings of Human-Robot Interaction (HRI).”

[ Robotics Debates ]

MassRobotics has a series of interviews where robotics celebrities are interviewed by high school students.The students are perhaps a little awkward (remember being in high school?), but it’s honest and the questions are interesting. The first two interviews are with Laurie Leshin, who worked on space robots at NASA and is now President of Worcester Polytechnic Institute, and Colin Angle, founder and CEO of iRobot.

[ MassRobotics ]

Thanks Andrew!

In this episode of the Voices from DARPA podcast, Dr. Timothy Chung, a program manager since 2016 in the agency’s Tactical Technology Office, delves into his robotics and autonomous technology programs – the Subterranean (SubT) Challenge and OFFensive Swarm-Enabled Tactics (OFFSET). From robot soccer to live-fly experimentation programs involving dozens of unmanned aircraft systems (UASs), he explains how he aims to assist humans heading into unknown environments via advances in collaborative autonomy and robotics.

[ DARPA ] Continue reading

Posted in Human Robots

#437845 Video Friday: Harmonic Bionics ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2020 – May 31-August 31, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.

Designed to protect employees and passengers from both harmful pathogens and cleaning agents, Breezy One can quickly, safely and effectively decontaminate spaces over 100,000 square feet in 1.5 hours with a patented, environmentally safe disinfectant. Breezy One was co-developed with the City of Albuquerque’s Aviation Department, where it autonomously sanitizes the Sunport’s facilities every night in the ongoing fight against COVID-19.

[ Fetch Robotics ]

Harmonic Bionics is redefining upper extremity neurorehabilitation with intelligent robotic technology designed to maximize patient recovery. Harmony SHR, our flagship product, works with a patient’s scapulohumeral rhythm (SHR) to enable natural, comprehensive therapy for both arms. When combined with Harmony’s Weight Support mode, this unique shoulder design may allow for earlier initiation of post-stroke therapy as Harmony can support a partial dislocation or subluxation of the shoulder prior to initiating traditional therapy exercises.

Harmony's Preprogrammed Exercises promotes functional treatment through patient-specific movements that can enable an increased number of repetitions per session without placing a larger physical burden on therapists or their resources. As the only rehabilitation exoskeleton with Bilateral Sync Therapy (BST), Harmony enables intent-based therapy by registering healthy arm movements and synchronizing that motion onto the stroke-affected side to help reestablish neural pathways.

[ Harmonic Bionics ]

Thanks Mok!

Some impressive work here from IHMC and IIT getting Atlas to take steps upward in a way that’s much more human-like than robot-like, which ends up reducing maximum torque requirements by 20 percent.

[ Paper ]

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ GITAI ]

Malloy Aeronautics, which now makes drones rather than hoverbikes, has been working with the Royal Navy in New Zealand to figure out how to get cargo drones to land on ships.

The challenge was to test autonomous landing of heavy lift UAVs on a moving ship, however, due to the Covid19 lockdown no ship trails were possible. The moving deck was simulated by driving a vehicle and trailer across an airfield while carrying out multiple landing and take-offs. The autonomous system partner was Planck Aerosystems and autolanding was triggered by a camera on the UAV reading a QR code on the trailer.

[ Malloy Aeronautics ]

Thanks Paul!

Tertill looks to be relentlessly effective.

[ Franklin Robotics ]

A Swedish company, TikiSafety has experienced a record amount of orders for their protective masks. At ABB, we are grateful for the opportunity to help Tiki Safety to speed up their manufacturing process from 6 minutes to 40 seconds.

[ Tiki Safety ]

The Korea Atomic Energy Research Institute is not messing around with ARMstrong, their robot for nuclear and radiation emergency response.

[ KAERI ]

OMOY is a robot that communicates with its users via internal weight shifting.

[ Paper ]

Now this, this is some weird stuff.

[ Segway ]

CaTARo is a Care Training Assistant Robot from the AIS Lab at Ritsumeikan University.

[ AIS Lab ]

Originally launched in 2015 to assist workers in lightweight assembly tasks, ABB’s collaborative YuMi robot has gone on to blaze a trail in a raft of diverse applications and industries, opening new opportunities and helping to fire people’s imaginations about what can be achieved with robotic automation.

[ ABB ]

This music video features COMAN+, from the Humanoids and Human Centered Mechatronics Lab at IIT, doing what you’d call dance moves if you dance like I do.

[ Alex Braga ] via [ IIT ]

The NVIDIA Isaac Software Development Kit (SDK) enables accelerated AI robot development workflows. Stacked with new tools and application support, Isaac SDK 2020.1 is an end-to-end solution supporting each step of robot fleet deployment, from design collaboration and training to the ongoing maintenance of AI applications.

[ NVIDIA ]

Robot Spy Komodo Dragon and Spy Pig film “a tender moment” between Komodo dragons but will they both survive the encounter?

[ BBC ] via [ Laughing Squid ]

This is part one of a mostly excellent five-part documentary about ROS produced by Red Hat. I say mostly only because they put ME in it for some reason, but fortunately, they talked with many of the core team that developed ROS back at Willow Garage back in the day, and it’s definitely worth watching.

[ Red Hat Open Source Stories ]

It’s been a while, but here’s an update on SRI’s Abacus Drive, from Alexander Kernbaum.

[ SRI ]

This Robots For Infectious Diseases interview features IEEE Fellow Antonio Bicchi, professor of robotics at the University of Pisa, talking about how Italy has been using technology to help manage COVID-19.

[ R4ID ]

Two more interviews this week of celebrity roboticists from MassRobotics: Helen Greiner and Marc Raibert. I’d introduce them, but you know who they are already!

[ MassRobotics ] Continue reading

Posted in Human Robots

#437824 Video Friday: These Giant Robots Are ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

“Who doesn’t love giant robots?”

Luma, is a towering 8 metre snail which transforms spaces with its otherworldly presence. Another piece, Triffid, stands at 6 metres and its flexible end sweeps high over audiences’ heads like an enchanted plant. The movement of the creatures is inspired by the flexible, wiggling and contorting motions of the animal kingdom and is designed to provoke instinctive reactions and emotions from the people that meet them. Air Giants is a new creative robotic studio founded in 2020. They are based in Bristol, UK, and comprise a small team of artists, roboticists and software engineers. The studio is passionate about creating emotionally effective motion at a scale which is thought-provoking and transporting, as well as expanding the notion of what large robots can be used for.

Here’s a behind the scenes and more on how the creatures work.

[ Air Giants ]

Thanks Emma!

If the idea of submerging a very expensive sensor payload being submerged in a lake makes you as uncomfortable as it makes me, this is not the video for you.

[ ANYbotics ]

As the pandemic continues on, the measures due to this health crisis are increasingly stringent, and working from home continues to be promoted and solicited by many companies, Pepper will allow you to keep in touch with your relatives or even your colleagues.

[ Softbank ]

Fairly impressive footwork from Tencent Robotics.

Although, LittleDog was doing that like a decade ago:

[ Tencent ]

It's been long enough since I've been able to go out for boba tea that a robotic boba tea kiosk seems like a reasonable thing to get for my living room.

[ Bobacino ] via [ Gizmodo ]

Road construction and maintenance is challenging and dangerous work. Pioneer Industrial Systems has spent over twenty years designing custom robotic systems for industrial manufacturers around the world. These robotic systems greatly improve safety and increase efficiency. Now they’re taking that expertise on the road, with the Robotic Maintenance Vehicle. This base unit can be mounted on a truck or trailer, and utilizes various modules to perform a variety of road maintenance tasks.

[ Pioneer ]

Extend Robotics arm uses cloud-based teleoperation software, featuring human-like dexterity and intelligence, with multiple applications in healthcare, utilities and energy

[ Extend Robotics ]

ARC, short for “AI, Robot, Cloud,” includes the latest algorithms and high precision data required for human-robot coexistence. Now with ultra-low latency networks, many robots can simultaneously become smarter, just by connecting to ARC. “ARC Eye” serves as the eyes for all robots, accurately determining the current location and route even indoors where there is no GPS access. “ARC Brain” is the computing system shared simultaneously by all robots, which plans and processes movement, localization, and task performance for the robot.

[ Naver Labs ]

How can we re-imagine urban infrastructures with cutting-edge technologies? Listen to this webinar from Ger Baron, Amsterdam’s CTO, and Senseable City Lab’s researchers, on how MIT and Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute) are reimagining Amsterdam’s canals with the first fleet of autonomous boats.

[ MIT ]

Join Guy Burroughes in this webinar recording to hear about Spot, the robot dog created by Boston Dynamics, and how RACE plan to use it in nuclear decommissioning and beyond.

[ UKAEA ]

This GRASP on Robotics seminar comes from Marco Pavone at Stanford University, “On Safe and Efficient Human-robot interactions via Multimodal Intent Modeling and Reachability-based Safety Assurance.”

In this talk I will present a decision-making and control stack for human-robot interactions by using autonomous driving as a motivating example. Specifically, I will first discuss a data-driven approach for learning multimodal interaction dynamics between robot-driven and human-driven vehicles based on recent advances in deep generative modeling. Then, I will discuss how to incorporate such a learned interaction model into a real-time, interaction-aware decision-making framework. The framework is designed to be minimally interventional; in particular, by leveraging backward reachability analysis, it ensures safety even when other cars defy the robot's expectations without unduly sacrificing performance. I will present recent results from experiments on a full-scale steer-by-wire platform, validating the framework and providing practical insights. I will conclude the talk by providing an overview of related efforts from my group on infusing safety assurances in robot autonomy stacks equipped with learning-based components, with an emphasis on adding structure within robot learning via control-theoretical and formal methods.

[ UPenn ]

Autonomous Systems Failures: Who is Legally and Morally Responsible? Sponsored by Northwestern University’s Law and Technology Initiative and AI@NU, the event was moderated by Dan Linna and included Northwestern Engineering's Todd Murphey, University of Washington Law Professor Ryan Calo, and Google Senior Research Scientist Madeleine Clare Elish.

[ Northwestern ] Continue reading

Posted in Human Robots

#437809 Q&A: The Masterminds Behind ...

Illustration: iStockphoto

Getting a car to drive itself is undoubtedly the most ambitious commercial application of artificial intelligence (AI). The research project was kicked into life by the 2004 DARPA Urban Challenge and then taken up as a business proposition, first by Alphabet, and later by the big automakers.

The industry-wide effort vacuumed up many of the world’s best roboticists and set rival companies on a multibillion-dollar acquisitions spree. It also launched a cycle of hype that paraded ever more ambitious deadlines—the most famous of which, made by Alphabet’s Sergei Brin in 2012, was that full self-driving technology would be ready by 2017. Those deadlines have all been missed.

Much of the exhilaration was inspired by the seeming miracles that a new kind of AI—deep learning—was achieving in playing games, recognizing faces, and transliterating voices. Deep learning excels at tasks involving pattern recognition—a particular challenge for older, rule-based AI techniques. However, it now seems that deep learning will not soon master the other intellectual challenges of driving, such as anticipating what human beings might do.

Among the roboticists who have been involved from the start are Gill Pratt, the chief executive officer of Toyota Research Institute (TRI) , formerly a program manager at the Defense Advanced Research Projects Agency (DARPA); and Wolfram Burgard, vice president of automated driving technology for TRI and president of the IEEE Robotics and Automation Society. The duo spoke with IEEE Spectrum’s Philip Ross at TRI’s offices in Palo Alto, Calif.

This interview has been condensed and edited for clarity.

IEEE Spectrum: How does AI handle the various parts of the self-driving problem?

Photo: Toyota

Gill Pratt

Gill Pratt: There are three different systems that you need in a self-driving car: It starts with perception, then goes to prediction, and then goes to planning.

The one that by far is the most problematic is prediction. It’s not prediction of other automated cars, because if all cars were automated, this problem would be much more simple. How do you predict what a human being is going to do? That’s difficult for deep learning to learn right now.

Spectrum: Can you offset the weakness in prediction with stupendous perception?

Photo: Toyota Research Institute for Burgard

Wolfram Burgard

Wolfram Burgard: Yes, that is what car companies basically do. A camera provides semantics, lidar provides distance, radar provides velocities. But all this comes with problems, because sometimes you look at the world from different positions—that’s called parallax. Sometimes you don’t know which range estimate that pixel belongs to. That might make the decision complicated as to whether that is a person painted onto the side of a truck or whether this is an actual person.

With deep learning there is this promise that if you throw enough data at these networks, it’s going to work—finally. But it turns out that the amount of data that you need for self-driving cars is far larger than we expected.

Spectrum: When do deep learning’s limitations become apparent?

Pratt: The way to think about deep learning is that it’s really high-performance pattern matching. You have input and output as training pairs; you say this image should lead to that result; and you just do that again and again, for hundreds of thousands, millions of times.

Here’s the logical fallacy that I think most people have fallen prey to with deep learning. A lot of what we do with our brains can be thought of as pattern matching: “Oh, I see this stop sign, so I should stop.” But it doesn’t mean all of intelligence can be done through pattern matching.

“I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur?”
—Gill Pratt, Toyota Research Institute

For instance, when I’m driving and I see a mother holding the hand of a child on a corner and trying to cross the street, I am pretty sure she’s not going to cross at a red light and jaywalk. I know from my experience being a human being that mothers and children don’t act that way. On the other hand, say there are two teenagers—with blue hair, skateboards, and a disaffected look. Are they going to jaywalk? I look at that, you look at that, and instantly the probability in your mind that they’ll jaywalk is much higher than for the mother holding the hand of the child. It’s not that you’ve seen 100,000 cases of young kids—it’s that you understand what it is to be either a teenager or a mother holding a child’s hand.

You can try to fake that kind of intelligence. If you specifically train a neural network on data like that, you could pattern-match that. But you’d have to know to do it.

Spectrum: So you’re saying that when you substitute pattern recognition for reasoning, the marginal return on the investment falls off pretty fast?

Pratt: That’s absolutely right. Unfortunately, we don’t have the ability to make an AI that thinks yet, so we don’t know what to do. We keep trying to use the deep-learning hammer to hammer more nails—we say, well, let’s just pour more data in, and more data.

Spectrum: Couldn’t you train the deep-learning system to recognize teenagers and to assign the category a high propensity for jaywalking?

Burgard: People have been doing that. But it turns out that these heuristics you come up with are extremely hard to tweak. Also, sometimes the heuristics are contradictory, which makes it extremely hard to design these expert systems based on rules. This is where the strength of the deep-learning methods lies, because somehow they encode a way to see a pattern where, for example, here’s a feature and over there is another feature; it’s about the sheer number of parameters you have available.

Our separation of the components of a self-driving AI eases the development and even the learning of the AI systems. Some companies even think about using deep learning to do the job fully, from end to end, not having any structure at all—basically, directly mapping perceptions to actions.

Pratt: There are companies that have tried it; Nvidia certainly tried it. In general, it’s been found not to work very well. So people divide the problem into blocks, where we understand what each block does, and we try to make each block work well. Some of the blocks end up more like the expert system we talked about, where we actually code things, and other blocks end up more like machine learning.

Spectrum: So, what’s next—what new technique is in the offing?

Pratt: If I knew the answer, we’d do it. [Laughter]

Spectrum: You said that if all cars on the road were automated, the problem would be easy. Why not “geofence” the heck out of the self-driving problem, and have areas where only self-driving cars are allowed?

Pratt: That means putting in constraints on the operational design domain. This includes the geography—where the car should be automated; it includes the weather, it includes the level of traffic, it includes speed. If the car is going slow enough to avoid colliding without risking a rear-end collision, that makes the problem much easier. Street trolleys operate with traffic still in some parts of the world, and that seems to work out just fine. People learn that this vehicle may stop at unexpected times. My suspicion is, that is where we’ll see Level 4 autonomy in cities. It’s going to be in the lower speeds.

“We are now in the age of deep learning, and we don’t know what will come after.”
—Wolfram Burgard, Toyota Research Institute

That’s a sweet spot in the operational design domain, without a doubt. There’s another one at high speed on a highway, because access to highways is so limited. But unfortunately there is still the occasional debris that suddenly crosses the road, and the weather gets bad. The classic example is when somebody irresponsibly ties a mattress to the top of a car and it falls off; what are you going to do? And the answer is that terrible things happen—even for humans.

Spectrum: Learning by doing worked for the first cars, the first planes, the first steam boilers, and even the first nuclear reactors. We ran risks then; why not now?

Pratt: It has to do with the times. During the era where cars took off, all kinds of accidents happened, women died in childbirth, all sorts of diseases ran rampant; the expected characteristic of life was that bad things happened. Expectations have changed. Now the chance of dying in some freak accident is quite low because of all the learning that’s gone on, the OSHA [Occupational Safety and Health Administration] rules, UL code for electrical appliances, all the building standards, medicine.

Furthermore—and we think this is very important—we believe that empathy for a human being at the wheel is a significant factor in public acceptance when there is a crash. We don’t know this for sure—it’s a speculation on our part. I’ve driven, I’ve had close calls; that could have been me that made that mistake and had that wreck. I think people are more tolerant when somebody else makes mistakes, and there’s an awful crash. In the case of an automated car, we worry that that empathy won’t be there.

Photo: Toyota

Toyota is using this
Platform 4 automated driving test vehicle, based on the Lexus LS, to develop Level-4 self-driving capabilities for its “Chauffeur” project.

Spectrum: Toyota is building a system called Guardian to back up the driver, and a more futuristic system called Chauffeur, to replace the driver. How can Chauffeur ever succeed? It has to be better than a human plus Guardian!

Pratt: In the discussions we’ve had with others in this field, we’ve talked about that a lot. What is the standard? Is it a person in a basic car? Or is it a person with a car that has active safety systems in it? And what will people think is good enough?

These systems will never be perfect—there will always be some accidents, and no matter how hard we try there will still be occasions where there will be some fatalities. At what threshold are people willing to say that’s okay?

Spectrum: You were among the first top researchers to warn against hyping self-driving technology. What did you see that so many other players did not?

Pratt: First, in my own case, during my time at DARPA I worked on robotics, not cars. So I was somewhat of an outsider. I was looking at it from a fresh perspective, and that helps a lot.

Second, [when I joined Toyota in 2015] I was joining a company that is very careful—even though we have made some giant leaps—with the Prius hybrid drive system as an example. Even so, in general, the philosophy at Toyota is kaizen—making the cars incrementally better every single day. That care meant that I was tasked with thinking very deeply about this thing before making prognostications.

And the final part: It was a new job for me. The first night after I signed the contract I felt this incredible responsibility. I couldn’t sleep that whole night, so I started to multiply out the numbers, all using a factor of 10. How many cars do we have on the road? Cars on average last 10 years, though ours last 20, but let’s call it 10. They travel on an order of 10,000 miles per year. Multiply all that out and you get 10 to the 10th miles per year for our fleet on Planet Earth, a really big number. I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur? And the answer was so incredibly good that I knew it would take a long time. That was five years ago.

Burgard: We are now in the age of deep learning, and we don’t know what will come after. We are still making progress with existing techniques, and they look very promising. But the gradient is not as steep as it was a few years ago.

Pratt: There isn’t anything that’s telling us that it can’t be done; I should be very clear on that. Just because we don’t know how to do it doesn’t mean it can’t be done. Continue reading

Posted in Human Robots

#437765 Video Friday: Massive Robot Joins ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Here are some professional circus artists messing around with an industrial robot for fun, like you do.

The acrobats are part of Östgötateatern, a Swedish theatre group, and the chair bit got turned into its own act, called “The Last Fish.” But apparently the Swedish Work Environment Authority didn’t like that an industrial robot—a large ABB robotic arm—was being used in an artistic performance, arguing that the same safety measures that apply in a factory setting would apply on stage. In other words, the robot had to operate inside a protective cage and humans could not physically interact with it.

When told that their robot had to be removed, the acrobats went to court. And won! At least that’s what we understand from this Swedish press release. The court in Linköping, in southern Sweden, ruled that the safety measures taken by the theater had been sufficient. The group had worked with a local robotics firm, Dyno Robotics, to program the manipulator and learn how to interact with it as safely as possible. The robot—which the acrobats say is the eighth member of their troupe—will now be allowed to return.

[ Östgötateatern ]

Houston Mechathronics’ Aquanaut continues to be awesome, even in the middle of a pandemic. It’s taken the big step (big swim?) out of NASA’s swimming pool and into open water.

[ HMI ]

Researchers from Carnegie Mellon University and Facebook AI Research have created a navigation system for robots powered by common sense. The technique uses machine learning to teach robots how to recognize objects and understand where they’re likely to be found in house. The result allows the machines to search more strategically.

[ CMU ]

Cassie manages 2.1 m/s, which is uncomfortably fast in a couple of different ways.

Next, untethered. After that, running!

[ Michigan Robotics ]

Engineers at Caltech have designed a new data-driven method to control the movement of multiple robots through cluttered, unmapped spaces, so they do not run into one another.

Multi-robot motion coordination is a fundamental robotics problem with wide-ranging applications that range from urban search and rescue to the control of fleets of self-driving cars to formation-flying in cluttered environments. Two key challenges make multi-robot coordination difficult: first, robots moving in new environments must make split-second decisions about their trajectories despite having incomplete data about their future path; second, the presence of larger numbers of robots in an environment makes their interactions increasingly complex (and more prone to collisions).

To overcome these challenges, Soon-Jo Chung, Bren Professor of Aerospace, and Yisong Yue, professor of computing and mathematical sciences, along with Caltech graduate student Benjamin Rivière (MS ’18), postdoctoral scholar Wolfgang Hönig, and graduate student Guanya Shi, developed a multi-robot motion-planning algorithm called “Global-to-Local Safe Autonomy Synthesis,” or GLAS, which imitates a complete-information planner with only local information, and “Neural-Swarm,” a swarm-tracking controller augmented to learn complex aerodynamic interactions in close-proximity flight.

[ Caltech ]

Fetch Robotics’ Freight robot is now hauling around pulsed xenon UV lamps to autonomously disinfect spaces with UV-A, UV-B, and UV-C, all at the same time.

[ SmartGuard UV ]

When you’re a vertically symmetrical quadruped robot, there is no upside-down.

[ Ghost Robotics ]

In the virtual world, the objects you pick up do not exist: you can see that cup or pen, but it does not feel like you’re touching them. That presented a challenge to EPFL professor Herbert Shea. Drawing on his extensive experience with silicone-based muscles and motors, Shea wanted to find a way to make virtual objects feel real. “With my team, we’ve created very small, thin and fast actuators,” explains Shea. “They are millimeter-sized capsules that use electrostatic energy to inflate and deflate.” The capsules have an outer insulating membrane made of silicone enclosing an inner pocket filled with oil. Each bubble is surrounded by four electrodes, that can close like a zipper. When a voltage is applied, the electrodes are pulled together, causing the center of the capsule to swell like a blister. It is an ingenious system because the capsules, known as HAXELs, can move not only up and down, but also side to side and around in a circle. “When they are placed under your fingers, it feels as though you are touching a range of different objects,” says Shea.

[ EPFL ]

Through the simple trick of reversing motors on impact, a quadrotor can land much more reliably on slopes.

[ Sherbrooke ]

Turtlebot delivers candy at Harvard.

I <3 Turtlebot SO MUCH

[ Harvard ]

Traditional drone controllers are a little bit counterintuitive, because there’s one stick that’s forwards and backwards and another stick that’s up and down but they’re both moving on the same axis. How does that make sense?! Here’s a remote that gives you actual z-axis control instead.

[ Fenics ]

Thanks Ashley!

Lio is a mobile robot platform with a multifunctional arm explicitly designed for human-robot interaction and personal care assistant tasks. The robot has already been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an everyday basis.

[ F&P Robotics ]

Video shows a ground vehicle autonomously exploring and mapping a multi-storage garage building and a connected patio on Carnegie Mellon University campus. The vehicle runs onboard state estimation and mapping leveraging range, vision, and inertial sensing, local planning for collision avoidance, and terrain analysis. All processing is real-time and no post-processing involved. The vehicle drives at 2m/s through the exploration run. This work is dedicated to DARPA Subterranean Challange.

[ CMU ]

Raytheon UK’s flagship STEM programme, the Quadcopter Challenge, gives 14-15 year olds the chance to participate in a hands-on, STEM-based engineering challenge to build a fully operational quadcopter. Each team is provided with an identical kit of parts, tools and instructions to build and customise their quadcopter, whilst Raytheon UK STEM Ambassadors provide mentoring, technical support and deliver bite-size learning modules to support the build.

[ Raytheon ]

A video on some of the research work that is being carried out at The Australian Centre for Field Robotics, University of Sydney.

[ University of Sydney ]

Jeannette Bohg, assistant professor of computer science at Stanford University, gave one of the Early Career Award Keynotes at RSS 2020.

[ RSS 2020 ]

Adam Savage remembers Grant Imahara.

[ Tested ] Continue reading

Posted in Human Robots