Tag Archives: vehicle
#438731 Video Friday: Perseverance Lands on Mars
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
Hmm, did anything interesting happen in robotics yesterday week?
Obviously, we're going to have tons more on the Mars Rover and Mars Helicopter over the next days, weeks, months, years, and (if JPL's track record has anything to say about it) decades. Meantime, here's what's going to happen over the next day or two:
[ Mars 2020 ]
PLEN hopes you had a happy Valentine's Day!
[ PLEN ]
Unitree dressed up a whole bunch of Laikago quadrupeds to take part in the 2021 Spring Festival Gala in China.
[ Unitree ]
Thanks Xingxing!
Marine iguanas compete for the best nesting sites on the Galapagos Islands. Meanwhile RoboSpy Iguana gets involved in a snot sneezing competition after the marine iguanas return from the sea.
[ Spy in the Wild ]
Tails, it turns out, are useful for almost everything.
[ DART Lab ]
Partnered with MD-TEC, this video demonstrates use of teleoperated robotic arms and virtual reality interface to perform closed suction for self-ventilating tracheostomy patients during COVID -19 outbreak. Use of closed suction is recommended to minimise aerosol generated during this procedure. This robotic method avoids staff exposure to virus to further protect NHS.
[ Extend Robotics ]
Fotokite is a safe, practical way to do local surveillance with a drone.
I just wish they still had a consumer version 🙁
[ Fotokite ]
How to confuse fish.
[ Harvard ]
Army researchers recently expanded their research area for robotics to a site just north of Baltimore. Earlier this year, Army researchers performed the first fully-autonomous tests onsite using an unmanned ground vehicle test bed platform, which serves as the standard baseline configuration for multiple programmatic efforts within the laboratory. As a means to transition from simulation-based testing, the primary purpose of this test event was to capture relevant data in a live, operationally-relevant environment.
[ Army ]
Flexiv's new RIZON 10 robot hopes you had a happy Valentine's Day!
[ Flexiv ]
Thanks Yunfan!
An inchworm-inspired crawling robot (iCrawl) is a 5 DOF robot with two legs; each with an electromagnetic foot to crawl on the metal pipe surfaces. The robot uses a passive foot-cap underneath an electromagnetic foot, enabling it to be a versatile pipe-crawler. The robot has the ability to crawl on the metal pipes of various curvatures in horizontal and vertical directions. The robot can be used as a new robotic solution to assist close inspection outside the pipelines, thus minimizing downtime in the oil and gas industry.
[ Paper ]
Thanks Poramate!
A short film about Robot Wars from Blender Magazine in 1995.
[ YouTube ]
While modern cameras provide machines with a very well-developed sense of vision, robots still lack such a comprehensive solution for their sense of touch. The talk will present examples of why the sense of touch can prove crucial for a wide range of robotic applications, and a tech demo will introduce a novel sensing technology targeting the next generation of soft robotic skins. The prototype of the tactile sensor developed at ETH Zurich exploits the advances in camera technology to reconstruct the forces applied to a soft membrane. This technology has the potential to revolutionize robotic manipulation, human-robot interaction, and prosthetics.
[ ETHZ ]
Thanks Markus!
Quadrupedal robotics has reached a level of performance and maturity that enables some of the most advanced real-world applications with autonomous mobile robots. Driven by excellent research in academia and industry all around the world, a growing number of platforms with different skills target different applications and markets. We have invited a selection of experts with long-standing experience in this vibrant research area
[ IFRR ]
Thanks Fan!
Since January 2020, more than 300 different robots in over 40 countries have been used to cope with some aspect of the impact of the coronavirus pandemic on society. The majority of these robots have been used to support clinical care and public safety, allowing responders to work safely and to handle the surge in infections. This panel will discuss how robots have been successfully used and what is needed, both in terms of fundamental research and policy, for robotics to be prepared for the future emergencies.
[ IFRR ]
At Skydio, we ship autonomous robots that are flown at scale in complex, unknown environments every day. We’ve invested six years of R&D into handling extreme visual scenarios not typically considered by academia nor encountered by cars, ground robots, or AR applications. Drones are commonly in scenes with few or no semantic priors on the environment and must deftly navigate thin objects, extreme lighting, camera artifacts, motion blur, textureless surfaces, vibrations, dirt, smudges, and fog. These challenges are daunting for classical vision, because photometric signals are simply inconsistent. And yet, there is no ground truth for direct supervision of deep networks. We’ll take a detailed look at these issues and how we’ve tackled them to push the state of the art in visual inertial navigation, obstacle avoidance, rapid trajectory planning. We will also cover the new capabilities on top of our core navigation engine to autonomously map complex scenes and capture all surfaces, by performing real-time 3D reconstruction across multiple flights.
[ UPenn ] Continue reading →
#438014 Meet Blueswarm, a Smart School of ...
Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.
Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.
The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.
“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”
The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.
Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.
“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.
In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.
“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”
Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.
“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.
The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.
“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading →
#438006 Smellicopter Drone Uses Live Moth ...
Research into robotic sensing has, understandably I guess, been very human-centric. Most of us navigate and experience the world visually and in 3D, so robots tend to get covered with things like cameras and lidar. Touch is important to us, as is sound, so robots are getting pretty good with understanding tactile and auditory information, too. Smell, though? In most cases, smell doesn’t convey nearly as much information for us, so while it hasn’t exactly been ignored in robotics, it certainly isn’t the sensing modality of choice in most cases.
Part of the problem with smell sensing is that we just don’t have a good way of doing it, from a technical perspective. This has been a challenge for a long time, and it’s why we either bribe or trick animals like dogs, rats, vultures, and other animals to be our sensing systems for airborne chemicals. If only they’d do exactly what we wanted them to do all the time, this would be fine, but they don’t, so it’s not.
Until we get better at making chemical sensors, leveraging biology is the best we can do, and what would be ideal would be some sort of robot-animal hybrid cyborg thing. We’ve seen some attempts at remote controlled insects, but as it turns out, you can simplify things if you don’t use the entire insect, but instead just find a way to use its sensing system. Enter the Smellicopter.
There’s honestly not too much to say about the drone itself. It’s an open-source drone project called Crazyflie 2.0, with some additional off the shelf sensors for obstacle avoidance and stabilization. The interesting bits are a couple of passive fins that keep the drone pointed into the wind, and then the sensor, called an electroantennogram.
Image: UW
The drone’s sensor, called an electroantennogram, consists of a “single excised antenna” from a Manduca sexta hawkmoth and a custom signal processing circuit.
To make one of these sensors, you just, uh, “harvest” an antenna from a live hawkmoth. Obligingly, the moth antenna is hollow, meaning that you can stick electrodes up it. Whenever the olfactory neurons in the antenna (which is still technically alive even though it’s not attached to the moth anymore) encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up. Plug the other ends of the electrodes into a voltage amplifier and filter, run it through an analog to digital converter, and you’ve got a chemical sensor that weighs just 1.5 gram and consumes only 2.7 mW of power. It’s significantly more sensitive than a conventional metal-oxide odor sensor, in a much smaller and more efficient form factor, making it ideal for drones.
To localize an odor, the Smellicopter uses a simple bioinspired approach called crosswind casting, which involves moving laterally left and right and then forward when an odor is detected. Here’s how it works:
The vehicle takes off to a height of 40 cm and then hovers for ten seconds to allow it time to orient upwind. The smellicopter starts casting left and right crosswind. When a volatile chemical is detected, the smellicopter will surge 25 cm upwind, and then resume casting. As long as the wind direction is fairly consistent, this strategy will bring the insect or robot increasingly closer to a singular source with each surge.
Since odors are airborne, they need a bit of a breeze to spread very far, and the Smellicopter won’t be able to detect them unless it’s downwind of the source. But, that’s just how odors work— even if you’re right next to the source, if the wind is blowing from you towards the source rather than the other way around, you might not catch a whiff of it.
Whenever the olfactory neurons in the antenna encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up
There are a few other constraints to keep in mind with this sensor as well. First, rather than detecting something useful (like explosives), it’s going to detect the smells of pretty flowers, because moths like pretty flowers. Second, the antenna will literally go dead on you within a couple hours, since it only functions while its tissues are alive and metaphorically kicking. Interestingly, it may be possible to use CRISPR-based genetic modification to breed moths with antennae that do respond to useful smells, which would be a neat trick, and we asked the researchers—Melanie Anderson, a doctoral student of mechanical engineering at the University of Washington, in Seattle; Thomas Daniel, a UW professor of biology; and Sawyer Fuller, a UW assistant professor of mechanical engineering—about this, along with some other burning questions, via email.
IEEE Spectrum, asking the important questions first: So who came up with “Smellicopter”?
Melanie Anderson: Tom Daniel coined the term “Smellicopter”. Another runner up was “OdorRotor”!
In general, how much better are moths at odor localization than robots?
Melanie Anderson: Moths are excellent at odor detection and odor localization and need to be in order to find mates and food. Their antennae are much more sensitive and specialized than any portable man-made odor sensor. We can't ask the moths how exactly they search for odors so well, but being able to have the odor sensitivity of a moth on a flying platform is a big step in that direction.
Tom Daniel: Our best estimate is that they outperform robotic sensing by at least three orders of magnitude.
How does the localization behavior of the Smellicopter compare to that of a real moth?
Anderson: The cast-and-surge odor search strategy is a simplified version of what we believe the moth (and many other odor searching animals) are doing. It is a reactive strategy that relies on the knowledge that if you detect odor, you can assume that the source is somewhere up-wind of you. When you detect odor, you simply move upwind, and when you lose the odor signal you cast in a cross-wind direction until you regain the signal.
Can you elaborate on the potential for CRISPR to be able to engineer moths for the detection of specific chemicals?
Anderson: CRISPR is already currently being used to modify the odor detection pathways in moth species. It is one of our future efforts to specifically use this to make the antennae sensitive to other chemicals of interest, such as the chemical scent of explosives.
Sawyer Fuller: We think that one of the strengths of using a moth's antenna, in addition to its speed, is that it may provide a path to both high chemical specificity as well as high sensitivity. By expressing a preponderance of only one or a few chemosensors, we are anticipating that a moth antenna will give a strong response only to that chemical. There are several efforts underway in other research groups to make such specific, sensitive chemical detectors. Chemical sensing is an area where biology exceeds man-made systems in terms of efficiency, small size, and sensitivity. So that's why we think that the approach of trying to leverage biological machinery that already exists has some merit.
You mention that the antennae lifespan can be extended for a few days with ice- how feasible do you think this technology is outside of a research context?
Anderson: The antennae can be stored in tiny vials in a standard refrigerator or just with an ice pack to extend their life to about a week. Additionally, the process for attaching the antenna to the electrical circuit is a teachable skill. It is definitely feasible outside of a research context.
Considering the trajectory that sensor development is on, how long do you think that this biological sensor system will outperform conventional alternatives?
Anderson: It's hard to speak toward what will happen in the future, but currently, the moth antenna still stands out among any commercially-available portable sensors.
There have been some experiments with cybernetic insects; what are the advantages and disadvantages of your approach, as opposed to (say) putting some sort of tracking system on a live moth?
Daniel: I was part of a cyber insect team a number of years ago. The challenge of such research is that the animal has natural reactions to attempts to steer or control it.
Anderson: While moths are better at odor tracking than robots currently, the advantage of the drone platform is that we have control over it. We can tell it to constrain the search to a certain area, and return after it finishes searching.
What can you tell us about the health, happiness, and overall wellfare of the moths in your experiments?
Anderson: The moths are cold anesthetized before the antennae are removed. They are then frozen so that they can be used for teaching purposes or in other research efforts.
What are you working on next?
Daniel: The four big efforts are (1) CRISPR modification, (2) experiments aimed at improving the longevity of the antennal preparation, (3) improved measurements of antennal electrical responses to odors combined with machine learning to see if we can classify different odors, and (4) flight in outdoor environments.
Fuller: The moth's antenna sensor gives us a new ability to sense with a much shorter latency than was previously possible with similarly-sized sensors (e.g. semiconductor sensors). What exactly a robot agent should do to best take advantage of this is an open question. In particular, I think the speed may help it to zero in on plume sources in complex environments much more quickly. Think of places like indoor settings with flow down hallways that splits out at doorways, and in industrial settings festooned with pipes and equipment. We know that it is possible to search out and find odors in such scenarios, as anybody who has had to contend with an outbreak of fruit flies can attest. It is also known that these animals respond very quickly to sudden changes in odor that is present in such turbulent, patchy plumes. Since it is hard to reduce such plumes to a simple model, we think that machine learning may provide insights into how to best take advantage of the improved temporal plume information we now have available.
Tom Daniel also points out that the relative simplicity of this project (now that the UW researchers have it all figured out, that is) means that even high school students could potentially get involved in it, even if it’s on a ground robot rather than a drone. All the details are in the paper that was just published in Bioinspiration & Biomimetics. Continue reading →
#437971 Video Friday: Teleport Yourself Into ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
Samsung announced some new prototype robots at CES this week. It's a fancy video, but my guess is that the actual autonomy here is minimal at best.
[ Samsung ]
Some very impressive reactive agility from Ghost Robotics' little quadruped.
[ Ghost Robotics ]
Toyota Research Institute (TRI) is researching how to bring together the instinctive reflexes of professional drivers and automated driving technology that uses the calculated foresight of a supercomputer. Using a Toyota GR Supra, TRI will learn from some of the most skilled drivers in the world to develop sophisticated vehicle control algorithms. The project’s goal is to design a new level of active safety technology for the Toyota Guardian™ approach of amplifying human driving abilities and helping keep people safe.
[ TRI ]
The end of this video features one of the most satisfying-sounding drone outtakes I've ever heard,
[ ASL ]
Reachy can now run the first humanoid VR teleoperation app available on the market. This app allows you to place yourself in the body of a humanoid robot, in VR, wherever you are in the world, to remotely operate it and carry out complex tasks. With this new functionality, Reachy is able to learn from the demonstration of the humans who control it, which makes application development even easier.
[ Pollen Robotics ]
Thanks Elsa!
Boston Dynamics has inspired some dancing robot videos recently, including this from Marco Tempest.
[ Marco Tempest ]
MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.
I like the minimalist approach. I dislike the “it’s like you’re interacting with a living pet” bit.
[ Kickstarter ]
There's a short gif of these warehouse robots going around, but here's the full video.
[ BionicHIVE ]
Vstone's Robovie-Z proves that you don't need fancy hardware for effective teleworking.
[ Vstone ]
All dual-arm robots are required, at some point, to play pool.
[ ABB ]
Volkswagen Group Components gives us a first glimpse of the real prototypes. This is one of the visionary charging concepts that Volkswagen hopes will expand the charging infrastructure over the next few years. Its task: fully autonomous charging of vehicles in restricted parking areas, like underground car parks.
To charge several vehicles at the same time, the mobile robot moves a trailer, essentially a mobile energy storage unit, to the vehicle, connects it up and then uses this energy storage unit to charge the battery of the electric vehicle. The energy storage unit stays with the vehicle during the charging process. In the meantime, the robot charges other electric vehicles.
[ Volkswagen ]
I've got a lot of questions about Moley Robotics' kitchen. But I would immediately point out that the system appears to do no prep work, which (at least for me) is the time-consuming and stressful part of cooking.
[ Moley Robotics ]
Blueswarm is a collective of fish-inspired miniature underwater robots that can achieve a wide variety of 3D collective behaviors – synchrony, aggregation/dispersion, milling, search – using only implicit communication mediated through the production and sensing of blue light. We envision this platform for investigating collective AI, underwater coordination, and fish-inspired locomotion and sensing.
[ Science Robotics ]
A team of Malaysian researchers are transforming pineapple leaves into strong materials that can be used to build frames for unmanned aircraft or drones.
[ Reuters ]
The future of facility disinfecting is here, protect your customers, and create peace of mind. Our drone sanitization spraying technology is up to 100% more efficient and effective than conventional manual spray sterilization processes.
[ Draganfly ]
Robots are no long a future technology, as small robots can be purchased today to be utilized for educational purposes. See what goes into making a modern robot come to life.
[ Huggbees ]
How does a robot dog learn how to dance? Adam and the Tested team examine and dive into Boston Dynamics' Choreographer software that was behind Spot's recent viral dancing video.
[ Tested ]
For years, engineers have had to deal with “the tyranny of the fairing,” that anything you want to send into space has to fit into the protective nosecone on top of the rocket. A field of advanced design has been looking for new ways to improve our engineering, using the centuries-old artform to dream bigger.
[ JPL ] Continue reading →
#437912 “Boston Dynamics Will Continue to ...
Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.
Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.
IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?
Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.
So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.
Photo: Boston Dynamics
Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”
How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?
In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.
Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.
Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?
So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.
What are you most excited about here? How do you think this deal will benefit Boston Dynamics?
I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.
“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”
Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.
And when you’ve been talking with Hyundai, what are they most excited about?
I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.
We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?
Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.
It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.
Photo: Boston Dynamics
Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.
While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?
Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.
As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.
How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?
We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.
I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.
“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”
Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?
Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.
And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.
Photo: Boston Dynamics
Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”
What would it take to commercialize Atlas? And are you getting closer with Handle?
We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.
For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”
The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?
Yes, that’s the work that we’re doing on Handle.
As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.
Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?
I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading →