Tag Archives: valley
#436021 AI Faces Speed Bumps and Potholes on Its ...
Implementing machine learning in the real world isn’t easy. The tools are available and the road is well-marked—but the speed bumps are many.
That was the conclusion of panelists wrapping up a day of discussions at the IEEE AI Symposium 2019, held at Cisco’s San Jose, Calif., campus last week.
The toughest problem, says Ben Irving, senior manager of Cisco’s strategy innovations group, is people.
It’s tough to find data scientist expertise, he indicated, so companies are looking into non-traditional sources of personnel, like political science. “There are some untapped areas with a lot of untapped data science expertise,” Irving says.
Lazard’s artificial intelligence manager Trevor Mottl agreed that would-be data scientists don’t need formal training or experience to break into the field. “This field is changing really rapidly,” he says. “There are new language models coming out every month, and new tools, so [anyone should] expect to not know everything. Experiment, try out new tools and techniques, read, study, spend time; there aren’t any true experts at this point because the foundational elements are shifting so rapidly.”
“It is a wonderful time to get into a field,” he reasons, noting that it doesn’t take long to catch up because there aren’t 20 years of history.”
Confusion about what different kinds of machine learning specialists do doesn’t help the personnel situation. An audience member asked panelists to explain the difference between data scientist, data analyst, and data engineer. Darrin Johnson, Nvidia global director of technical marketing for enterprise, admitted it’s hard to sort out, and any two companies could define the positions differently. “Sometimes,” he says, particularly at smaller companies, “a data scientist plays all three roles. But as companies grow, there are different groups that ingest data, clean data, and use data. At some companies, training and inference are separate. It really depends, which is a challenge when you are trying to hire someone.”
Mitigating the risks of a hot job market
The competition to hire data scientists, analysts, engineers, or whatever companies call them requires that managers make sure any work being done is structured and comprehensible at all times, the panelists cautioned.
“We need to remember that our data scientists go home every day and sometimes they don’t come back because they go home and then go to a different company,” says Lazard’s Mottl. “That’s a fact of life. If you give people choice on [how they do development], and have a successful person who gets poached by competitor, you have to either hire a team to unwrap what that person built or jettison their work and rebuild it.”
By contrast, he says, “places that have structured coding and structured commits and organized constructions of software have done very well.”
But keeping all of a company’s engineers working with the same languages and on the same development paths is not easy to do in a field that moves as fast as machine learning. Zongjie Diao, Cisco director of product management for machine learning, quipped: “I have a data scientist friend who says the speed at which he changes girlfriends is less than speed at which he changes languages.”
The data scientist/IT manager clash
Once a company finds the data engineers and scientists they need and get them started on the task of applying machine learning to that company’s operations, one of the first obstacles they face just might be the company’s IT department, the panelists suggested.
“IT is process oriented,” Mottl says. The IT team “knows how to keep data secure, to set up servers. But when you bring in a data science team, they want sandboxes, they want freedom, they want to explore and play.”
Also, Nvidia’s Johnson pointed out, “There is a language barrier.” The AI world, he says, is very different from networking or storage, and data scientists find it hard to articulate their requirements to IT.
On the ground or in the cloud?
And then there is the decision of where exactly machine learning should happen—on site, or in the cloud? At Lazard, Mottl says, the deep learning engineers do their experimentation on premises; that’s their sandbox. “But when we deploy, we deploy in the cloud,” he says.
Nvidia, Johnson says, thinks the opposite approach is better. We see the cloud as “the sandbox,” he says. “So you can run as many experiments as possible, fail fast, and learn faster.”
For Cisco’s Irving, the “where” of machine learning depends on the confidentiality of the data.
Mottl, who says rolling machine learning technology into operation can hit resistance from all across the company, had one last word of caution for those aiming to implement AI:
Data scientists are building things that might change the ways other people in the organization work, like sales and even knowledge workers. [You need to] think about the internal stakeholders and prepare them, because the last thing you want to do is to create a valuable new thing that nobody likes and people take potshots against.
The AI Symposium was organized by the Silicon Valley chapters of the IEEE Young Professionals, the IEEE Consultants’ Network, and IEEE Women in Engineering and supported by Cisco. Continue reading
#435824 A Q&A with Cruise’s head of AI, ...
In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.
Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.
Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.
Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.
IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?
Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.
“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”
I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.
In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.
There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.
IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?
Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.
Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.
I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.
The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.
Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.
IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?
Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.
And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”
IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?
Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.
“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”
Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.
It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.
I can see how I can spend a lifetime career trying to solve this problem.
IEEE Spectrum: Why are you doing most of your development in San Francisco?
Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.
“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”
[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.
A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading
#435703 FarmWise Raises $14.5 Million to Teach ...
We humans spend most of our time getting hungry or eating, which must be really inconvenient for the people who have to produce food for everyone. For a sustainable and tasty future, we’ll need to make the most of what we’ve got by growing more food with less effort, and that’s where the robots can help us out a little bit.
FarmWise, a California-based startup, is looking to enhance farming efficiency by automating everything from seeding to harvesting, starting with the worst task of all: weeding. And they’ve just raised US $14.5 million to do it.
FarmWise’s autonomous, AI-enabled robots are designed to solve farmers’ most pressing challenges by performing a variety of farming functions – starting with weeding, and providing personalized care to every plant they touch. Using machine learning models, computer vision and high-precision mechanical tools, FarmWise’s sophisticated robots cleanly pick weeds from fields, leaving crops with the best opportunity to thrive while eliminating harmful chemical inputs. To date, FarmWise’s robots have efficiently removed weeds from more than 10 million plants.
FarmWise is not the first company to work on large mobile farming robots. A few years ago, we wrote about DeepField Robotics and their giant weed-punching robot. But considering how many humans there are, and how often we tend to get hungry, it certainly seems like there’s plenty of opportunity to go around.
Photo: FarmWise
FarmWise is collecting massive amounts of data about every single plant in an entire field, which is something that hasn’t been possible before. Above, one of the robots at a farm in Salinas Valley, Calif.
Weeding is just one thing that farm robots are able to do. FarmWise is collecting massive amounts of data about every single plant in an entire field, practically on the per-leaf level, which is something that hasn’t been possible before. Data like this could be used for all sorts of things, but generally, the long-term hope is that robots could tend to every single plant individually—weeding them, fertilizing them, telling them what good plants they are, and then mercilessly yanking them out of the ground at absolute peak ripeness. It’s not realistic to do this with human labor, but it’s the sort of data-intensive and monotonous task that robots could be ideal for.
The question with robots like this is not necessarily whether they can do the job that they were created for, because generally, they can—farms are structured enough environments that they lend themselves to autonomous robots, and the tasks are relatively well defined. The issue right now, I think, is whether robots are really time- and cost-effective for farmers. Capable robots are an expensive investment, and even if there is a shortage of human labor, will robots perform well enough to convince farmers to adopt the technology? That’s a solid maybe, and here’s hoping that FarmWise can figure out how to make it work.
[ FarmWise ] Continue reading