Tag Archives: university

#435750 Video Friday: Amazon CEO Jeff Bezos ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
Let us know if you have suggestions for next week, and enjoy today’s videos.

Last week at the re:MARS conference, Amazon CEO and aspiring supervillain Jeff Bezos tried out this pair of dexterous robotic hands, which he described as “weirdly natural” to operate. The system combines Shadow Robot’s anthropomorphic robot hands with SynTouch’s biomimetic tactile sensors and HaptX’s haptic feedback gloves.

After playing with the robot, Bezos let out his trademark evil laugh.

[ Shadow Robot ]

The RoboMaster S1 is DJI’s advanced new educational robot that opens the door to limitless learning and entertainment. Develop programming skills, get familiar with AI technology, and enjoy thrilling FPV driving with games and competition. From young learners to tech enthusiasts, get ready to discover endless possibilities with the RoboMaster S1.

[ DJI ]

It’s very impressive to see DLR’s humanoid robot Toro dynamically balancing, even while being handed heavy objects, pushing things, and using multi-contact techniques to kick a fire extinguisher for some reason.

The paper is in RA-L, and you can find it at the link below.

[ RA-L ] via [ DLR ]

Thanks Maximo!

Is it just me, or does the Suzumori Endo Robotics Laboratory’s Super Dragon arm somehow just keep getting longer?

Suzumori Endo Lab, Tokyo Tech developed a 10 m-long articulated manipulator for investigation inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Plants. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. This work was published in IEEE Robotics and Automation Letters and Transactions of the JSME.

[ Suzumori Endo Lab ]

From what I can make out thanks to Google Translate, this cute little robot duck (developed by Nissan) helps minimize weeds in rice fields by stirring up the water.

[ Nippon.com ]

Confidence in your robot is when you can just casually throw it off of a balcony 15 meters up.

[ SUTD ]

You had me at “we’re going to completely submerge this apple in chocolate syrup.”

[ Soft Robotics Inc ]

In the mid 2020s, the European Space Agency is planning on sending a robotic sample return mission to the Moon. It’s called Heracles, after the noted snake-strangler of Greek mythology.

[ ESA ]

Rethink Robotics is still around, they’re just much more German than before. And Sawyer is still hard at work stealing jobs from humans.

[ Rethink Robotics ]

The reason to watch this new video of the Ghost Robotics Vision 60 quadruped is for the 3 seconds worth of barrel roll about 40 seconds in.

[ Ghost Robotics ]

This is a relatively low-altitude drop for Squishy Robotics’ tensegrity scout, but it still cool to watch a robot that’s resilient enough to be able to fall and just not worry about it.

[ Squishy Robotics ]

We control here the Apptronik DRACO bipedal robot for unsupported dynamic locomotion. DRACO consists of a 10 DoF lower body with liquid cooled viscoelastic actuators to reduce weight, increase payload, and achieve fast dynamic walking. Control and walking algorithms are designed by UT HCRL Laboratory.

I think all robot videos should be required to start with two “oops” clips followed by a “for real now” clip.

[ Apptronik ]

SAKE’s EZGripper manages to pick up a wrench, and also pick up a raspberry without turning it into instajam.

[ SAKE Robotics ]

And now: the robotic long-tongued piggy, courtesy Sony Toio.

[ Toio ]

In this video the ornithopter developed inside the ERC Advanced Grant GRIFFIN project performs its first flight. This projects aims to develop a flapping wing system with manipulation and human interaction capabilities.

A flapping-wing system with manipulation and human interaction capabilities, you say? I would like to subscribe to your newsletter.

[ GRVC ]

KITECH’s robotic hands and arms can manipulate, among other things, five boxes of Elmos. I’m not sure about the conversion of Elmos to Snuffleupaguses, although it turns out that one Snuffleupagus is exactly 1,000 pounds.

[ Ji-Hun Bae ]

The Australian Centre for Field Robotics (ACFR) has been working on agricultural robots for almost a decade, and this video sums up a bunch of the stuff that they’ve been doing, even if it’s more amusing than practical at times.

[ ACFR ]

ROS 2 is great for multi-robot coordination, like when you need your bubble level to stay really, really level.

[ Acutronic Robotics ]

We don’t hear iRobot CEO Colin Angle give a lot of talks, so this recent one (from Amazon’s re:MARS conference) is definitely worth a listen, especially considering how much innovation we’ve seen from iRobot recently.

Colin Angle, founder and CEO of iRobot, has unveil a series of breakthrough innovations in home robots from iRobot. For the first time on stage, he will discuss and demonstrate what it takes to build a truly intelligent system of robots that work together to accomplish more within the home – and enable that home, and the devices within it, to work together as one.

[ iRobot ]

In the latest episode of Robots in Depth, Per speaks with Federico Pecora from the Center for Applied Autonomous Sensor Systems at Örebro University in Sweden.

Federico talks about working on AI and service robotics. In this area he has worked on planning, especially focusing on why a particular goal is the one that the robot should work on. To make robots as useful and user friendly as possible, he works on inferring the goal from the robot’s environment so that the user does not have to tell the robot everything.

Federico has also worked with AI robotics planning in industry to optimize results. Managing the relative importance of tasks is another challenging area there. In this context, he works on automating not only a single robot for its goal, but an entire fleet of robots for their collective goal. We get to hear about how these techniques are being used in warehouse operations, in mines and in agriculture.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435748 Video Friday: This Robot Is Like a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.

[ Tertill ]

Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.

[ Team BlackSheep ]

ICYMI: iRobot announced this week that it has acquired Root Robotics.

[ iRobot ]

This Boston Dynamics parody video went viral this week.

The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?

This is still our favorite Boston Dynamics parody video:

[ Corridor ]

Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.

[ CMU ]

Organic chemists, prepare to meet your replacement:

Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).

[ arXiv ] via [ NTU ]

So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.

[ Montreal Gazette ]

For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.

[ Nikkei ]

The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.

[ SML ]

As drone shows go, this one is pretty good.

[ CCTV ]

Here’s a remote controlled robot shooting stuff with a very large gun.

[ HDT ]

Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.

[ Misty Robotics ]

If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!

[ Flyability ]

The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.

[ Soft Robotics ]

What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.

This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.

[ Num Opt Wkshp ]

Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.

[ CCDC ARL ]

Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.

[ AI Podcast ]

In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.

Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435738 Boing Goes the Trampoline Robot

There are a handful of quadrupedal robots out there that are highly dynamic, with the ability to run and jump, but those robots tend to be rather expensive and complicated, requiring powerful actuators and legs with elasticity. Boxing Wang, a Ph.D. student in the College of Control Science and Engineering at Zhejiang University in China, contacted us to share a project he’s been working to investigate quadruped jumping with simple, affordable hardware.

“The motivation for this project is quite simple,” Boxing says. “I wanted to study quadrupedal jumping control, but I didn’t have custom-made powerful actuators, and I didn’t want to have to design elastic legs. So I decided to use a trampoline to make a normal servo-driven quadruped robot to jump.”

Boxing and his colleagues had wanted to study quadrupedal running and jumping, so they built this robot with the most powerful servos they had access to: Kondo KRS6003RHV actuators, which have a maximum torque of 6 Nm. After some simple testing, it became clear that the servos were simply not fast or powerful enough to get the robot to jump, and that an elastic element was necessary to store energy to help the robot get off the ground.

“Normally, people would choose elastic legs,” says Boxing. “But nobody in my lab knew for sure how to design them. If we tried making elastic legs and we failed to make the robot jump, we couldn’t be sure whether the problem was the legs or the control algorithms. For hardware, we decided that it’s better to start with something reliable, something that definitely won’t be the source of the problem.”

As it turns out, all you need is a trampoline, an inertial measurement unit (IMU), and little tactile switches on the end of each foot to detect touch-down and lift-off events, and you can do some useful jumping research without a jumping robot. And the trampoline has other benefits as well—because it’s stiffer at the edges than at the center, for example, the robot will tend to center itself on the trampoline, and you get some warning before things go wrong.

“I can’t say that it’s a breakthrough to make a quadruped robot jump on a trampoline,” Boxing tells us. “But I believe this is useful for prototype testing, especially for people who are interested in quadrupedal jumping control but without a suitable robot at hand.”

To learn more about the project, we emailed him some additional questions.

IEEE Spectrum: Where did this idea come from?

Boxing Wang: The idea of the trampoline came while we were drinking milk tea. I don’t know why it came up, maybe someone saw a trampoline in a gym recently. And I don’t remember who proposed it exactly. It was just like someone said it unintentionally. But I realized that a trampoline would be a perfect choice. It’s reliable, easy to buy, and should have a similar dynamic model with the one of jumping with springy legs (we have briefly analyzed this in a paper). So I decided to try the trampoline.

How much do you think you can learn using a quadruped on a trampoline, instead of using a jumping quadruped?

Generally speaking, no contact surfaces are strictly rigid. They all have elasticity. So there are no essential differences between jumping on a trampoline and jumping on a rigid surface. However, using a quadruped on a trampoline can give you more information on how to make use of elasticity to make jumping easier and more efficient. You can use quadruped robots with springy legs to address the same problem, but that usually requires much more time on hardware design.

We prefer to treat the trampoline experiment as a kind of early test for further real jumping quadruped design. Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure. Due to the similarity between jumping on a trampoline with rigid legs and jumping on hard surfaces with springy legs, the control algorithms you develop could be transferred to hard-surface jumping robots.

“Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure”

Do you think that this idea can be beneficial for other kinds of robotics research?

Yes. For jumping quadrupeds with springy legs, the control algorithms could be first designed through trampoline tests using simple rigid legs. And the hardware design for elastic legs could be accelerated with the help of the control algorithms you design. In addition, we believe our work could be a good example of using a position-control robot to realize dynamic motions such as jumping, or even running.

Unlike other dynamic robots, every active joint in our robot is controlled through commercial position-control servos and not custom torque control motors. Most people don’t think that a position-control robot could perform highly dynamic motions such as jumping, because position-control motors usually mean high a gear ratio and slow response. However, our work indicates that, with the help of elasticity, stable jumping could be realized through position-control servos. So for those who already have a position-control robot at hand, they could explore the potential of their robot through trampoline tests.

Why is teaching a robot to jump important?

There are many scenarios where a jumping robot is needed. For example, a real jumping quadruped could be used to design a running quadruped. Both experience moments when all four legs are in the air, and it is easier to start from jumping and then move to running. Specifically, hopping or pronking can easily transform to bounding if the pitch angle is not strictly controlled. A bounding quadruped is similar to a running rabbit, so for now it can already be called a running quadruped.

To the best of our knowledge, a practical use of jumping quadrupeds could be planet exploration, just like what SpaceBok was designed for. In a low-gravity environment, jumping is more efficient than walking, and it’s easier to jump over obstacles. But if I had a jumping quadruped on Earth, I would teach it to catch a ball that I throw at it by jumping. It would be fantastic!

That would be fantastic.

Since the whole point of the trampoline was to get jumping software up and running with a minimum of hardware, the next step is to add some springy legs to the robot so that the control system the researchers developed can be tested on hard surfaces. They have a journal paper currently under revision, and Boxing Wang is joined as first author by his adviser Chunlin Zhou, undergrads Ziheng Duan and Qichao Zhu, and researchers Jun Wu and Rong Xiong. Continue reading

Posted in Human Robots

#435733 Robot Squid and Robot Scallop Showcase ...

Most underwater robots use one of two ways of getting around. Way one is with propellers, and way two is with fins. But animals have shown us that there are many more kinds of underwater locomotion, potentially offering unique benefits to robots. We’ll take a look at two papers from ICRA this year that showed bioinspired underwater robots moving in creative new ways: A jet-powered squid robot that can leap out of the water, plus a robotic scallop that moves just like the real thing.

Image: Beihang University

Prototype of the squid robot in (a) open and (b) folded states. The soft fins and arms are controlled by pneumatic actuators.

This “squid-like aquatic-aerial vehicle” from Beihang University in China is modeled after flying squids. Real squids, in addition to being tasty, propel themselves using water jets, and these jets are powerful enough that some squids can not only jump out of the water, but actually achieve controlled flight for a brief period by continuing to jet while in the air. The flight phase is extended through the use of fins as arms and wings to generate a little bit of lift. Real squids use this multimodal propulsion to escape predators, and it’s also much faster—a squid can double its normal swimming speed while in the air, flying at up to 50 body lengths per second.

The squid robot is powered primarily by compressed air, which it stores in a cylinder in its nose (do squids have noses?). The fins and arms are controlled by pneumatic actuators. When the robot wants to move through the water, it opens a value to release a modest amount of compressed air; releasing the air all at once generates enough thrust to fire the robot squid completely out of the water.

The jumping that you see at the end of the video is preliminary work; we’re told that the robot squid can travel between 10 and 20 meters by jumping, whereas using its jet underwater will take it just 10 meters. At the moment, the squid can only fire its jet once, but the researchers plan to replace the compressed air with something a bit denser, like liquid CO2, which will allow for extended operation and multiple jumps. There’s also plenty of work to do with using the fins for dynamic control, which the researchers say will “reveal the superiority of the natural flying squid movement.”

“Design and Experiments of a Squid-like Aquatic-aerial Vehicle With Soft Morphing Fins and Arms,” by Taogang Hou, Xingbang Yang, Haohong Su, Buhui Jiang, Lingkun Chen, Tianmiao Wang, and Jianhong Liang from Beihang University in China, was presented at ICRA 2019 in Montreal.

Image: EPFL

The EPFL researchers studied the morphology and function of a real scallop (a) to design their robot scallop (b), which consists of two shells connected at a hinge and enclosed by a flexible elastic membrane. The robot and animal both swim by rapidly, cyclicly opening and closing their shells to generate water jets for propulsion. When the robot shells open, water is drawn into the body through rear openings near the hinge. When the shells close rapidly, the water is forced out, propelling the robot forward (c).

RoboScallop, a “bivalve inspired swimming robot,” comes from EPFL’s Reconfigurable Robotics Laboratory, headed by Jamie Paik. Real scallops, in addition to being tasty, propel themselves by opening and closing their shells to generate jets of water out of their backsides. By repetitively opening their shells slowly and then closing quickly, scallops can generate forward thrust in a way that’s completely internal to their bodies. Relative to things like fins or spinning propellers, a scallop is simple and robust, especially as you scale down or start looking at large swarms of robots. The EPFL researchers describe their robotic scallop as representing “a unique combination of robust to hazards or sustained use, safe in delicate environments, and simple by design.”

And here’s how the real thing looks:

As you can see from the video, RoboScallop is safe to handle even while it’s operating, although a gentle nibbling is possible if you get too handsy with it. Since the robot sucks water in and then jets it out immediately, the design is resistant to fouling, which can be a significant problem in marine environments. The RoboScallop prototype weighs 65 grams, and tops out at a brisk 16 centimeters per second, while clapping (that’s the actual technical) at just over 2.5 Hz. While RoboScallop doesn’t yet steer, real scallops can change direction by jetting out more water on one side than the other, and RoboScallop should be able to do this as well. The researchers also suggest that RoboScallop itself could even double as a gripper, which as far as I know, is not something that real scallops can do.

“RoboScallop: A Bivalve-Inspired Swimming Robot,” by Matthew A. Robertson, Filip Efremov, and Jamie Paik, was presented at ICRA 2019 in Montreal. Continue reading

Posted in Human Robots

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots