Tag Archives: unit
#435541 This Giant AI Chip Is the Size of an ...
People say size doesn’t matter, but when it comes to AI the makers of the largest computer chip ever beg to differ. There are plenty of question marks about the gargantuan processor, but its unconventional design could herald an innovative new era in silicon design.
Computer chips specialized to run deep learning algorithms are a booming area of research as hardware limitations begin to slow progress, and both established players and startups are vying to build the successor to the GPU, the specialized graphics chip that has become the workhorse of the AI industry.
On Monday Californian startup Cerebras came out of stealth mode to unveil an AI-focused processor that turns conventional wisdom on its head. For decades chip makers have been focused on making their products ever-smaller, but the Wafer Scale Engine (WSE) is the size of an iPad and features 1.2 trillion transistors, 400,000 cores, and 18 gigabytes of on-chip memory.
The Cerebras Wafer-Scale Engine (WSE) is the largest chip ever built. It measures 46,225 square millimeters and includes 1.2 trillion transistors. Optimized for artificial intelligence compute, the WSE is shown here for comparison alongside the largest graphics processing unit. Image Credit: Used with permission from Cerebras Systems.
There is a method to the madness, though. Currently, getting enough cores to run really large-scale deep learning applications means connecting banks of GPUs together. But shuffling data between these chips is a major drain on speed and energy efficiency because the wires connecting them are relatively slow.
Building all 400,000 cores into the same chip should get round that bottleneck, but there are reasons it’s not been done before, and Cerebras has had to come up with some clever hacks to get around those obstacles.
Regular computer chips are manufactured using a process called photolithography to etch transistors onto the surface of a wafer of silicon. The wafers are inches across, so multiple chips are built onto them at once and then split up afterwards. But at 8.5 inches across, the WSE uses the entire wafer for a single chip.
The problem is that while for standard chip-making processes any imperfections in manufacturing will at most lead to a few processors out of several hundred having to be ditched, for Cerebras it would mean scrapping the entire wafer. To get around this the company built in redundant circuits so that even if there are a few defects, the chip can route around them.
The other big issue with a giant chip is the enormous amount of heat the processors can kick off—so the company has had to design a proprietary water-cooling system. That, along with the fact that no one makes connections and packaging for giant chips, means the WSE won’t be sold as a stand-alone component, but as part of a pre-packaged server incorporating the cooling technology.
There are no details on costs or performance so far, but some customers have already been testing prototypes, and according to Cerebras results have been promising. CEO and co-founder Andrew Feldman told Fortune that early tests show they are reducing training time from months to minutes.
We’ll have to wait until the first systems ship to customers in September to see if those claims stand up. But Feldman told ZDNet that the design of their chip should help spur greater innovation in the way engineers design neural networks. Many cornerstones of this process—for instance, tackling data in batches rather than individual data points—are guided more by the hardware limitations of GPUs than by machine learning theory, but their chip will do away with many of those obstacles.
Whether that turns out to be the case or not, the WSE might be the first indication of an innovative new era in silicon design. When Google announced it’s AI-focused Tensor Processing Unit in 2016 it was a wake-up call for chipmakers that we need some out-of-the-box thinking to square the slowing of Moore’s Law with skyrocketing demand for computing power.
It’s not just tech giants’ AI server farms driving innovation. At the other end of the spectrum, the desire to embed intelligence in everyday objects and mobile devices is pushing demand for AI chips that can run on tiny amounts of power and squeeze into the smallest form factors.
These trends have spawned renewed interest in everything from brain-inspired neuromorphic chips to optical processors, but the WSE also shows that there might be mileage in simply taking a sideways look at some of the other design decisions chipmakers have made in the past rather than just pumping ever more transistors onto a chip.
This gigantic chip might be the first exhibit in a weird and wonderful new menagerie of exotic, AI-inspired silicon.
Image Credit: Used with permission from Cerebras Systems. Continue reading
#435436 Undeclared Wars in Cyberspace Are ...
The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.
Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.
This is cyberwarfare.
The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).
At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.
For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.
“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”
The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.
The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.
US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.
However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.
“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”
The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.
Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².
UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.
“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.
However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”
Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.
Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”
White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”
The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.
“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.
But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.
“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”
In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.
Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.
Image Credit: pinkeyes / Shutterstock.com Continue reading
#434854 New Lifelike Biomaterial Self-Reproduces ...
Life demands flux.
Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.
What if we could endow cold, static, lifeless robots with the gift of metabolism?
In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.
Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.
The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.
“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.
“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.
Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.
Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?
Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.
Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”
The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.
Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.
DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.
Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.
Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.
This “enabled a general design strategy for the DASH patterns,” they said.
In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.
These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.
Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.
“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.
Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.
In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.
Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.
Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.
The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.
In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.
A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.
DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.
Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.
“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.
“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”
Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading
#433659 AI Could Provide Moment-by-Moment ...
In the intensive care unit, artificial intelligence can keep watch at a patient’s bedside Continue reading
#433622 AI Could Provide Moment-by-Moment ...
In the intensive care unit, artificial intelligence can keep watch at a patient’s bedside Continue reading