Tag Archives: Turing

#435181 This Week’s Awesome Stories From ...

ROBOTICS
Inside the Amazon Warehouse Where Humans and Machines Become One
Matt Simon | Wired
“Seen from above, the scale of the system is dizzying. My robot, a little orange slab known as a ‘drive’ (or more formally and mythically, Pegasus), is just one of hundreds of its kind swarming a 125,000-square-foot ‘field’ pockmarked with chutes. It’s a symphony of electric whirring, with robots pausing for one another at intersections and delivering their packages to the slides.”

FUTURE OF WORK
Top Oxford Researcher Talks the Risk of Automation to Employment
Luke Dormehl | Digital Trends
“[Karl Benedict Frey’s] new book…compares the age of artificial intelligence to past shifts in the labor market, such as the Industrial Revolution. Frey spoke with Digital Trends about the impacts of automation, changing attitudes, and what—if anything—we can do about the coming robot takeover.”

AUTOMATION
Watch Amazon’s All-New Delivery Drone Zipping Through the Skies
Trevor Mogg | Digital Trends
“The autonomous electric-powered aircraft features six rotors and can take off like a helicopter and fly like a plane… Jeff Wilke, chief of the company’s global consumer business, said the drone can fly 15 miles and carry packages weighing up to 5 pounds, which, he said, covers most stuff ordered on Amazon.”

ARTIFICIAL INTELLIGENCE
This AI-Powered Subreddit Has Been Simulating the Real Thing For Years
Amrita Khalid | Engadget
“The bots comment on each other’s posts, and things can quickly get heated. Topics range from politics to food to relationships to completely nonsensical memes. While many of the posts are incomprehensible or nonsensical, it’s hard to argue that much of life on social media isn’t.”

COMPUTING
Overlooked No More: Alan Turing, Condemned Codebreaker and Computer Visionary
Alan Cowell | The New York Times
“To this day Turing is recognized in his own country and among a broad society of scientists as a pillar of achievement who had fused brilliance and eccentricity, had moved comfortably in the abstruse realms of mathematics and cryptography but awkwardly in social settings, and had been brought low by the hostile society into which he was born.”

GENETICS
Congress Is Debating—Again—Whether Genes Can Be Patented
Megan Molteni | Wired
“Under debate are the notions that natural phenomena, observations of laws of nature, and abstract ideas are unpatentable. …If successful, some worry this bill could carve up the world’s genetic resources into commercial fiefdoms, forcing scientists to perform basic research under constant threat of legal action.”

Image Credit: John Petalcurin / Unsplash Continue reading

Posted in Human Robots

#434781 What Would It Mean for AI to Become ...

As artificial intelligence systems take on more tasks and solve more problems, it’s hard to say which is rising faster: our interest in them or our fear of them. Futurist Ray Kurzweil famously predicted that “By 2029, computers will have emotional intelligence and be convincing as people.”

We don’t know how accurate this prediction will turn out to be. Even if it takes more than 10 years, though, is it really possible for machines to become conscious? If the machines Kurzweil describes say they’re conscious, does that mean they actually are?

Perhaps a more relevant question at this juncture is: what is consciousness, and how do we replicate it if we don’t understand it?

In a panel discussion at South By Southwest titled “How AI Will Design the Human Future,” experts from academia and industry discussed these questions and more.

Wait, What Is AI?
Most of AI’s recent feats—diagnosing illnesses, participating in debate, writing realistic text—involve machine learning, which uses statistics to find patterns in large datasets then uses those patterns to make predictions. However, “AI” has been used to refer to everything from basic software automation and algorithms to advanced machine learning and deep learning.

“The term ‘artificial intelligence’ is thrown around constantly and often incorrectly,” said Jennifer Strong, a reporter at the Wall Street Journal and host of the podcast “The Future of Everything.” Indeed, one study found that 40 percent of European companies that claim to be working on or using AI don’t actually use it at all.

Dr. Peter Stone, associate chair of computer science at UT Austin, was the study panel chair on the 2016 One Hundred Year Study on Artificial Intelligence (or AI100) report. Based out of Stanford University, AI100 is studying and anticipating how AI will impact our work, our cities, and our lives.

“One of the first things we had to do was define AI,” Stone said. They defined it as a collection of different technologies inspired by the human brain to be able to perceive their surrounding environment and figure out what actions to take given these inputs.

Modeling on the Unknown
Here’s the crazy thing about that definition (and about AI itself): we’re essentially trying to re-create the abilities of the human brain without having anything close to a thorough understanding of how the human brain works.

“We’re starting to pair our brains with computers, but brains don’t understand computers and computers don’t understand brains,” Stone said. Dr. Heather Berlin, cognitive neuroscientist and professor of psychiatry at the Icahn School of Medicine at Mount Sinai, agreed. “It’s still one of the greatest mysteries how this three-pound piece of matter can give us all our subjective experiences, thoughts, and emotions,” she said.

This isn’t to say we’re not making progress; there have been significant neuroscience breakthroughs in recent years. “This has been the stuff of science fiction for a long time, but now there’s active work being done in this area,” said Amir Husain, CEO and founder of Austin-based AI company Spark Cognition.

Advances in brain-machine interfaces show just how much more we understand the brain now than we did even a few years ago. Neural implants are being used to restore communication or movement capabilities in people who’ve been impaired by injury or illness. Scientists have been able to transfer signals from the brain to prosthetic limbs and stimulate specific circuits in the brain to treat conditions like Parkinson’s, PTSD, and depression.

But much of the brain’s inner workings remain a deep, dark mystery—one that will have to be further solved if we’re ever to get from narrow AI, which refers to systems that can perform specific tasks and is where the technology stands today, to artificial general intelligence, or systems that possess the same intelligence level and learning capabilities as humans.

The biggest question that arises here, and one that’s become a popular theme across stories and films, is if machines achieve human-level general intelligence, does that also mean they’d be conscious?

Wait, What Is Consciousness?
As valuable as the knowledge we’ve accumulated about the brain is, it seems like nothing more than a collection of disparate facts when we try to put it all together to understand consciousness.

“If you can replace one neuron with a silicon chip that can do the same function, then replace another neuron, and another—at what point are you still you?” Berlin asked. “These systems will be able to pass the Turing test, so we’re going to need another concept of how to measure consciousness.”

Is consciousness a measurable phenomenon, though? Rather than progressing by degrees or moving through some gray area, isn’t it pretty black and white—a being is either conscious or it isn’t?

This may be an outmoded way of thinking, according to Berlin. “It used to be that only philosophers could study consciousness, but now we can study it from a scientific perspective,” she said. “We can measure changes in neural pathways. It’s subjective, but depends on reportability.”

She described three levels of consciousness: pure subjective experience (“Look, the sky is blue”), awareness of one’s own subjective experience (“Oh, it’s me that’s seeing the blue sky”), and relating one subjective experience to another (“The blue sky reminds me of a blue ocean”).

“These subjective states exist all the way down the animal kingdom. As humans we have a sense of self that gives us another depth to that experience, but it’s not necessary for pure sensation,” Berlin said.

Husain took this definition a few steps farther. “It’s this self-awareness, this idea that I exist separate from everything else and that I can model myself,” he said. “Human brains have a wonderful simulator. They can propose a course of action virtually, in their minds, and see how things play out. The ability to include yourself as an actor means you’re running a computation on the idea of yourself.”

Most of the decisions we make involve envisioning different outcomes, thinking about how each outcome would affect us, and choosing which outcome we’d most prefer.

“Complex tasks you want to achieve in the world are tied to your ability to foresee the future, at least based on some mental model,” Husain said. “With that view, I as an AI practitioner don’t see a problem implementing that type of consciousness.”

Moving Forward Cautiously (But Not too Cautiously)
To be clear, we’re nowhere near machines achieving artificial general intelligence or consciousness, and whether a “conscious machine” is possible—not to mention necessary or desirable—is still very much up for debate.

As machine intelligence continues to advance, though, we’ll need to walk the line between progress and risk management carefully.

Improving the transparency and explainability of AI systems is one crucial goal AI developers and researchers are zeroing in on. Especially in applications that could mean the difference between life and death, AI shouldn’t advance without people being able to trace how it’s making decisions and reaching conclusions.

Medicine is a prime example. “There are already advances that could save lives, but they’re not being used because they’re not trusted by doctors and nurses,” said Stone. “We need to make sure there’s transparency.” Demanding too much transparency would also be a mistake, though, because it will hinder the development of systems that could at best save lives and at worst improve efficiency and free up doctors to have more face time with patients.

Similarly, self-driving cars have great potential to reduce deaths from traffic fatalities. But even though humans cause thousands of deadly crashes every day, we’re terrified by the idea of self-driving cars that are anything less than perfect. “If we only accept autonomous cars when there’s zero probability of an accident, then we will never accept them,” Stone said. “Yet we give 16-year-olds the chance to take a road test with no idea what’s going on in their brains.”

This brings us back to the fact that, in building tech modeled after the human brain—which has evolved over millions of years—we’re working towards an end whose means we don’t fully comprehend, be it something as basic as choosing when to brake or accelerate or something as complex as measuring consciousness.

“We shouldn’t charge ahead and do things just because we can,” Stone said. “The technology can be very powerful, which is exciting, but we have to consider its implications.”

Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#433799 The First Novel Written by AI Is ...

Last year, a novelist went on a road trip across the USA. The trip was an attempt to emulate Jack Kerouac—to go out on the road and find something essential to write about in the experience. There is, however, a key difference between this writer and anyone else talking your ear off in the bar. This writer is just a microphone, a GPS, and a camera hooked up to a laptop and a whole bunch of linear algebra.

People who are optimistic that artificial intelligence and machine learning won’t put us all out of a job say that human ingenuity and creativity will be difficult to imitate. The classic argument is that, just as machines freed us from repetitive manual tasks, machine learning will free us from repetitive intellectual tasks.

This leaves us free to spend more time on the rewarding aspects of our work, pursuing creative hobbies, spending time with loved ones, and generally being human.

In this worldview, creative works like a great novel or symphony, and the emotions they evoke, cannot be reduced to lines of code. Humans retain a dimension of superiority over algorithms.

But is creativity a fundamentally human phenomenon? Or can it be learned by machines?

And if they learn to understand us better than we understand ourselves, could the great AI novel—tailored, of course, to your own predispositions in fiction—be the best you’ll ever read?

Maybe Not a Beach Read
This is the futurist’s view, of course. The reality, as the jury-rigged contraption in Ross Goodwin’s Cadillac for that road trip can attest, is some way off.

“This is very much an imperfect document, a rapid prototyping project. The output isn’t perfect. I don’t think it’s a human novel, or anywhere near it,” Goodwin said of the novel that his machine created. 1 The Road is currently marketed as the first novel written by AI.

Once the neural network has been trained, it can generate any length of text that the author desires, either at random or working from a specific seed word or phrase. Goodwin used the sights and sounds of the road trip to provide these seeds: the novel is written one sentence at a time, based on images, locations, dialogue from the microphone, and even the computer’s own internal clock.

The results are… mixed.

The novel begins suitably enough, quoting the time: “It was nine seventeen in the morning, and the house was heavy.” Descriptions of locations begin according to the Foursquare dataset fed into the algorithm, but rapidly veer off into the weeds, becoming surreal. While experimentation in literature is a wonderful thing, repeatedly quoting longitude and latitude coordinates verbatim is unlikely to win anyone the Booker Prize.

Data In, Art Out?
Neural networks as creative agents have some advantages. They excel at being trained on large datasets, identifying the patterns in those datasets, and producing output that follows those same rules. Music inspired by or written by AI has become a growing subgenre—there’s even a pop album by human-machine collaborators called the Songularity.

A neural network can “listen to” all of Bach and Mozart in hours, and train itself on the works of Shakespeare to produce passable pseudo-Bard. The idea of artificial creativity has become so widespread that there’s even a meme format about forcibly training neural network ‘bots’ on human writing samples, with hilarious consequences—although the best joke was undoubtedly human in origin.

The AI that roamed from New York to New Orleans was an LSTM (long short-term memory) neural net. By default, information contained in individual neurons is preserved, and only small parts can be “forgotten” or “learned” in an individual timestep, rather than neurons being entirely overwritten.

The LSTM architecture performs better than previous recurrent neural networks at tasks such as handwriting and speech recognition. The neural net—and its programmer—looked further in search of literary influences, ingesting 60 million words (360 MB) of raw literature according to Goodwin’s recipe: one third poetry, one third science fiction, and one third “bleak” literature.

In this way, Goodwin has some creative control over the project; the source material influences the machine’s vocabulary and sentence structuring, and hence the tone of the piece.

The Thoughts Beneath the Words
The problem with artificially intelligent novelists is the same problem with conversational artificial intelligence that computer scientists have been trying to solve from Turing’s day. The machines can understand and reproduce complex patterns increasingly better than humans can, but they have no understanding of what these patterns mean.

Goodwin’s neural network spits out sentences one letter at a time, on a tiny printer hooked up to the laptop. Statistical associations such as those tracked by neural nets can form words from letters, and sentences from words, but they know nothing of character or plot.

When talking to a chatbot, the code has no real understanding of what’s been said before, and there is no dataset large enough to train it through all of the billions of possible conversations.

Unless restricted to a predetermined set of options, it loses the thread of the conversation after a reply or two. In a similar way, the creative neural nets have no real grasp of what they’re writing, and no way to produce anything with any overarching coherence or narrative.

Goodwin’s experiment is an attempt to add some coherent backbone to the AI “novel” by repeatedly grounding it with stimuli from the cameras or microphones—the thematic links and narrative provided by the American landscape the neural network drives through.

Goodwin feels that this approach (the car itself moving through the landscape, as if a character) borrows some continuity and coherence from the journey itself. “Coherent prose is the holy grail of natural-language generation—feeling that I had somehow solved a small part of the problem was exhilarating. And I do think it makes a point about language in time that’s unexpected and interesting.”

AI Is Still No Kerouac
A coherent tone and semantic “style” might be enough to produce some vaguely-convincing teenage poetry, as Google did, and experimental fiction that uses neural networks can have intriguing results. But wading through the surreal AI prose of this era, searching for some meaning or motif beyond novelty value, can be a frustrating experience.

Maybe machines can learn the complexities of the human heart and brain, or how to write evocative or entertaining prose. But they’re a long way off, and somehow “more layers!” or a bigger corpus of data doesn’t feel like enough to bridge that gulf.

Real attempts by machines to write fiction have so far been broadly incoherent, but with flashes of poetry—dreamlike, hallucinatory ramblings.

Neural networks might not be capable of writing intricately-plotted works with charm and wit, like Dickens or Dostoevsky, but there’s still an eeriness to trying to decipher the surreal, Finnegans’ Wake mish-mash.

You might see, in the odd line, the flickering ghost of something like consciousness, a deeper understanding. Or you might just see fragments of meaning thrown into a neural network blender, full of hype and fury, obeying rules in an occasionally striking way, but ultimately signifying nothing. In that sense, at least, the RNN’s grappling with metaphor feels like a metaphor for the hype surrounding the latest AI summer as a whole.

Or, as the human author of On The Road put it: “You guys are going somewhere or just going?”

Image Credit: eurobanks / Shutterstock.com Continue reading

Posted in Human Robots

#432487 Can We Make a Musical Turing Test?

As artificial intelligence advances, we’re encountering the same old questions. How much of what we consider to be fundamentally human can be reduced to an algorithm? Can we create something sufficiently advanced that people can no longer distinguish between the two? This, after all, is the idea behind the Turing Test, which has yet to be passed.

At first glance, you might think music is beyond the realm of algorithms. Birds can sing, and people can compose symphonies. Music is evocative; it makes us feel. Very often, our intense personal and emotional attachments to music are because it reminds us of our shared humanity. We are told that creative jobs are the least likely to be automated. Creativity seems fundamentally human.

But I think above all, we view it as reductionist sacrilege: to dissect beautiful things. “If you try to strangle a skylark / to cut it up, see how it works / you will stop its heart from beating / you will stop its mouth from singing.” A human musician wrote that; a machine might be able to string words together that are happy or sad; it might even be able to conjure up a decent metaphor from the depths of some neural network—but could it understand humanity enough to produce art that speaks to humans?

Then, of course, there’s the other side of the debate. Music, after all, has a deeply mathematical structure; you can train a machine to produce harmonics. “In the teachings of Pythagoras and his followers, music was inseparable from numbers, which were thought to be the key to the whole spiritual and physical universe,” according to Grout in A History of Western Music. You might argue that the process of musical composition cannot be reduced to a simple algorithm, yet musicians have often done so. Mozart, with his “Dice Music,” used the roll of a dice to decide how to order musical fragments; creativity through an 18th-century random number generator. Algorithmic music goes back a very long way, with the first papers on the subject from the 1960s.

Then there’s the techno-enthusiast side of the argument. iTunes has 26 million songs, easily more than a century of music. A human could never listen to and learn from them all, but a machine could. It could also memorize every note of Beethoven. Music can be converted into MIDI files, a nice chewable data format that allows even a character-by-character neural net you can run on your computer to generate music. (Seriously, even I could get this thing working.)

Indeed, generating music in the style of Bach has long been a test for AI, and you can see neural networks gradually learn to imitate classical composers while trying to avoid overfitting. When an algorithm overfits, it essentially starts copying the existing music, rather than being inspired by it but creating something similar: a tightrope the best human artists learn to walk. Creativity doesn’t spring from nowhere; even maverick musical geniuses have their influences.

Does a machine have to be truly ‘creative’ to produce something that someone would find valuable? To what extent would listeners’ attitudes change if they thought they were hearing a human vs. an AI composition? This all suggests a musical Turing Test. Of course, it already exists. In fact, it’s run out of Dartmouth, the school that hosted that first, seminal AI summer conference. This year, the contest is bigger than ever: alongside the PoetiX, LimeriX and LyriX competitions for poetry and lyrics, there’s a DigiKidLit competition for children’s literature (although you may have reservations about exposing your children to neural-net generated content… it can get a bit surreal).

There’s also a pair of musical competitions, including one for original compositions in different genres. Key genres and styles are represented by Charlie Parker for Jazz and the Bach chorales for classical music. There’s also a free composition, and a contest where a human and an AI try to improvise together—the AI must respond to a human spontaneously, in real time, and in a musically pleasing way. Quite a challenge! In all cases, if any of the generated work is indistinguishable from human performers, the neural net has passed the Turing Test.

Did they? Here’s part of 2017’s winning sonnet from Charese Smiley and Hiroko Bretz:

The large cabin was in total darkness.
Come marching up the eastern hill afar.
When is the clock on the stairs dangerous?
Everything seemed so near and yet so far.
Behind the wall silence alone replied.
Was, then, even the staircase occupied?
Generating the rhymes is easy enough, the sentence structure a little trickier, but what’s impressive about this sonnet is that it sticks to a single topic and appears to be a more coherent whole. I’d guess they used associated “lexical fields” of similar words to help generate something coherent. In a similar way, most of the more famous examples of AI-generated music still involve some amount of human control, even if it’s editorial; a human will build a song around an AI-generated riff, or select the most convincing Bach chorale from amidst many different samples.

We are seeing strides forward in the ability of AI to generate human voices and human likenesses. As the latter example shows, in the fake news era people have focused on the dangers of this tech– but might it also be possible to create a virtual performer, trained on a dataset of their original music? Did you ever want to hear another Beatles album, or jam with Miles Davis? Of course, these things are impossible—but could we create a similar experience that people would genuinely value? Even, to the untrained eye, something indistinguishable from the real thing?

And if it did measure up to the real thing, what would this mean? Jaron Lanier is a fascinating technology writer, a critic of strong AI, and a believer in the power of virtual reality to change the world and provide truly meaningful experiences. He’s also a composer and a musical aficionado. He pointed out in a recent interview that translation algorithms, by reducing the amount of work translators are commissioned to do, have, in some sense, profited from stolen expertise. They were trained on huge datasets purloined from human linguists and translators. If you can train an AI on someone’s creative output and it produces new music, who “owns” it?

Although companies that offer AI music tools are starting to proliferate, and some groups will argue that the musical Turing test has been passed already, AI-generated music is hardly racing to the top of the pop charts just yet. Even as the line between human-composed and AI-generated music starts to blur, there’s still a gulf between the average human and musical genius. In the next few years, we’ll see how far the current techniques can take us. It may be the case that there’s something in the skylark’s song that can’t be generated by machines. But maybe not, and then this song might need an extra verse.

Image Credit: d1sk / Shutterstock.com Continue reading

Posted in Human Robots

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots